
Processses
CSC209H5: Software Tools & Systems Programming

Robert (Rupert) Wu
rupert.wu@utoronto.ca

Department of Computer Science
University of Toronto

March 6, 2023

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 1 / 39

https://www.cs.toronto.edu/~rupert/
mailto:rupert.wu@utoronto.ca
https://web.cs.toronto.edu
https://web.cs.toronto.edu
https://utm.calendar.utoronto.ca/course/csc209h5

Lesson Plan

1 Introduction to Processes
fork

2 Termination & Status
3 Testing Your Understanding
4 Loading into a Process

exec
5 Putting it Together

Acknowledgements
Parts of the slides are borrowed from Andi Bergen, Karen Reid, Alan Rosenthal and
Arnold Rosenbloom.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 2 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Section 1

Processes

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 3 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: What are they?

A program is executable file on disk (either source code or compiled machine code),
and a process is a running instance of a program.

Executing multiple instances of the same program launches multiple processes.
Example: running multiple instances of Notepad.

A single instance of a program may launch multiple processes.
Example: Firefox/Chrome run one-process-per-tab.

Each process has its own memory space, including its own stack and heap.
A process cannot access the variables/memory of another process.
Process ID (PID): unique, non-negative integer identifier; a handle by which to
refer to a process.
The first process created when the system boots up is init, with PID 1.

init is typically provided by systemd on Linux.
Others such as runit and openrc exist for Linux/BSD/UNIX-like systems.
On MacOS, the init process is launchd.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 4 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: What do they do?

Processes can be running, ready or blocked.

Figure 1: processes grouped by states

Currently-Running Processes
Try pstree from bash to print the tree of currently-running processes

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 5 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: What do they do?

Processes can be running, ready or blocked.

Figure 2: what the states mean

Currently-Running Processes
Try pstree from bash to print the tree of currently-running processes

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 6 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Creation

In UNIX-like systems, processes are created by the fork() system call.

fork() allows one process, the parent, to create a new process, the child.
The new child process is an (almost) exact duplicate of the parent: The two
processes execute the same program text and the child obtains copies of the
parent’s stack, data, and heap. Their PIDs are different though.
After fork() has completed its execution,

two processes exist, and, in each process, execution continues from the point
where fork() returns.
each process can modify the variables in its stack, data, and heap segments
without affecting the other process;
however, we don’t know whether the parent process or the child process will
execute first.

The two processes can be distinguished via the value returned from fork():
Return value in parent is the PID of the child process.
Return value in child is 0 if there was no error.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 7 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: pid_t (data type)

The pid_t data type is a signed integer type which is capable of representing a PID.
In the GNU C Library, this is an int (but could be long*). Consider the following.

int i = 5;
printf("%d\n", i);
pid_t pid = fork();
if (pid > 0)

i = 6; /* only parent gets here */
else if (pid == 0) {

i = 4; /* only child gets here */
printf(" child: %d\n", pid); // 0, not the actual PID
printf("parent: %d\n", ???); // parent's PID?

}
printf("%d\n", i);

How to print the actual PID of the child if pid is 0?
How to print the PID of the parent from the child process?

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 8 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: pid_t (functions)

How to print the actual PID of the child if pid is 0? How to print the PID of the
parent from the child process?

We have access to a few functions that return pid_t identifiers.

pid_t getpid (void); // returns the PID of the current process.
pid_t getppid (void); // returns the parent PID of the current process.
pid_t gettid (void); // returns the thread ID of the current thread

We can then call getpid and getppid in the child process.

else if (pid == 0) {
i = 4; /* only child gets here */
printf(" child: %d\n", getpid());
printf("parent: %d\n", getppid());

}

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 9 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Creation (Example)

What happens when you fork? Conceptually, it looks like this:

// original process (parent) // child process
int i = 5;
printf("%d\n", i);
pid_t pid = fork(); pid_t pid = fork(); // spawns
if (pid > 0) if (pid > 0)

i = 6; /* doesn't run */
else if (pid == 0) { else if (pid == 0) {

/* doesn't run */ i = 4;
printf("child: %d\n", getpid());
printf("parent: %d\n", getppid());

} }
printf("%d\n", i); printf("%d\n", i);

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 10 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Monitoring

In many applications where a parent creates child processes, it is useful for the parent
to be able to monitor the children to find out when and how they terminate. This
facility is provided by wait() and a number of related system calls.

#include "sys/wait.h"
pid_t wait(int *status);

The wait() system call waits for one of the children of the calling process to
terminate and returns the termination status of that child in the buffer pointed to
by status. Returns PID of terminated child, or -1 on error.

If no (previously unwaited-for) child of the calling process has not yet
terminated, the call blocks until one of the children terminates.
If a child has already terminated by the time of the call, wait() returns
immediately, returning the process ID of the child that has terminated. The
termination status of the child is stored at the memory space status is
pointing to.
If the calling process doesn’t have any child processes, wait() returns
immediately with an error.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 11 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

File Descriptors vs. File Descriptions

Figure 3: Mapping between file descriptors and file descriptions

File descriptors in different processes may refer to the same open file description in
OS’s open file table.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 12 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

File Descriptors: Sharing the Same Open File Description

A child process gets a copy of the parent’s file descriptor table. So all open files open
in the parent before the fork are also open in the child.

Immediately after the fork, both parent and child’s file descriptors refer to the same
open file descriptions in the system-wide open file table.

If the parent process opens a file before a fork:

Whichever process (parent or child) calls fread first will read the first N bytes.
Whichever process calls fread afterwards will read the next M bytes.

Since both parent and child processes refer to the same file description, they both
share the same offset value.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 13 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Section 2

Termination & Status

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 14 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Termination & Status (_exit)

A process may terminate in two general ways:

1 abnormal termination
2 normal termination, using the _exit() system call.

#include "stdlib.h"
void _exit(int status);

A process exit status is saved to be reported back to the parent process via wait or
waitpid. If the program exited, this status includes as its low-order 8 bits the
program exit status.

8 bits24 bits

Process exit (termination) status

Program exit status

Source: The GNU C Library
Processses CSC209: Software Tools & Sys Prog. March 6, 2023 15 / 39

https://www.gnu.org/software/libc/manual/html_node/Termination-Internals.html
https://utm.calendar.utoronto.ca/course/csc209h5

Termination & Status (exit)

Programs generally don’t call _exit() directly. Instead the exit() library function is
called. exit() performs some cleanup (e.g., flush stdio streams) and calls _exit(),
which sets the process exit status (or termination status), and terminates the process.

#include "stdlib.h"
void exit(int status);

The status argument given to _exit() and exit() is the program’s exit status,
which becomes part of the process’s exit status.

What’s the Difference?
#include "stdio.h"
#include "stdlib.h"
#include "unistd.h"

int main() { int main() {
printf("Hi"); printf("Hi");
_exit(0); exit(0);

} }

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 16 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Termination: Exit vs. Return

Inside main(), return and exit() are nearly equivalent (save some edge cases):

1 The return value of main() is the program exit status passed to exit().
2 exit() performs some cleanup (e.g., flush stdio streams) and calls _exit().
3 _exit() sets the process exit status, or termination status, and terminates the

process.

Outside of main(), use exit() to terminate the process.

Exit Status Conventions
Return 0 on success, any other value on error.
But if you’re a real GNU/Linux geek…

A general convention reserves status values 128 and up for special purposes.
In particular, the value 128 is used to indicate failure to execute another
program in a subprocess.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 17 / 39

https://www.gnu.org/software/libc/manual/html_node/Exit-Status.html
https://utm.calendar.utoronto.ca/course/csc209h5

Termination: Orphans & Zombies

The lifetimes of parent and child processes are usually not the same: either the
parent outlives the child or vice versa.

Orphan Processes
A terminating process may be a parent; in that case all of its children processes
become orphans.
The kernel ensures all of the orphaned processes are adopted by init.

Zombie Processes
When a child terminates before its parent, the parent should still be permitted to
perform a wait() at some later time to determine how the child terminated.

The kernel deals with this situation by turning the child into a zombie, a process
that is waiting for its parent to accept its return code.
When a process become a zombie, most of the resources held by it are released
back to the system except an entry in the kernel’s process table recording the
child’s PID, termination status, and resource usage statistics.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 18 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Section 3

Processes: Test Your Understanding

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 19 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Test Your Understanding

1 How do we obtain the program exit status from the process exit status?
2 What happens if a process terminates before its exit status is obtained by its

parent?
3 What happens if a parent process terminates before waiting for all its children?

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 20 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Test Your Understanding

Here are some questions:

1 How do we obtain the program exit status from the process exit status?
Use macros defined in wait.h (see man 2 wait), e.g.,
WIFEXITED(status) to see if process terminated normally or abnormally.
WEXITSTATUS(status) to obtain program exit status.

2 What happens if a process terminates before its exit status is obtained by its
parent?

The child process becomes a zombie process. Operating system retains minimal
information about the process until the parent obtains exit status via wait().

3 What happens if a parent process terminates before waiting for all its children?
The child processes become orphan processes. Orphan processes are adopted by
the init process.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 21 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Test Your Understanding

Which statements are true when fork() is called?

1 True/False? The child process shares the same PID as the parent process.
2 True/False? fork() will only fail if the total number of processes under

execution by a single user would be exceeded.
3 True/False? After fork() has been called successfully, a value of 0 is returned

to the child.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 22 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Test Your Understanding

Which statements are true when fork() is called?

1 True/False? The child process shares the same PID as the parent process. False.
2 True/False? fork() will only fail if the total number of processes under

execution by a single user would be exceeded. False.
3 True/False? After fork() has been called successfully, a value of 0 is returned

to the child. True.

See man 2 fork: linux.die.net/man/2/fork

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 23 / 39

https://linux.die.net/man/2/fork
https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Test Your Understanding

Consider the program below that runs without errors. How many child processes?

int main(void) {
printf("Mangoes\n");
int r = fork();
printf("Apples\n");
if (r == 0) {

printf("Oranges\n");
if (fork() >= 0) printf("Bananas\n");
return 0;

}
printf("Peaches\n");
for (int i = 0; i < 3; i++) {

if ((r = fork()) == 0) {
printf("Pears\n"); exit(0);
printf("Nectarines\n"); continue;

}
printf("Plums\n");

}
return 0;

}

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 24 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Test Your Understanding

1 How many times is each fruit printed?

Fruit Name Times Printed
Mangoes
Apples
Oranges
Bananas
Peaches
Pears
Nectarines
Plums

2 Several orderings of the fruit names are possible valid output. Some of these
orderings even have the unix prompt displaying before the final fruit name (or
names). Explain why this happens.

3 Not all of the fruit names could appear after the prompt in a valid output. For
example the word Mangoes will never appear after the prompt. List all the fruit
names that could occur after the prompt.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 25 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Processes: Test Your Understanding

1 How many times is each fruit printed?

Fruit Name Times Printed
Nectarines 0
Mangoes/Oranges/Peaches 1
Apples/Bananas 2
Plums/Pears 3

2 Several orderings of the fruit names are possible valid output. Some of these
orderings even have the unix prompt displaying before the final fruit name (or
names). Explain why this happens.

The shell is the parent of and waits for the original process before printing the
shell prompt. But this original process doesn’t wait for its own children, so
latters’ output may be printed after their parents terminate.

3 Not all of the fruit names could appear after the prompt in a valid output. For
example the word Mangoes will never appear after the prompt. List all the fruit
names that could occur after the prompt.

Apples, Bananas, Oranges, Pears
Processses CSC209: Software Tools & Sys Prog. March 6, 2023 26 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Section 4

Loading into a Process (exec)

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 27 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

exec: What is it?

The exec functions (provided by unistd.h) load a new program into the current
process image. The process retains its original PID.

Figure 4: exec*()

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 28 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

exec: The Basic execve

The execve() system call loads a new program into a process’s memory. During this
operation, the old program is discarded, and the process’s stack, data, and heap are
replaced by those of the new program.

#include "unistd.h"
extern char **environ; // what's this for?

int execve(const char *filename, char *const argv[], char *const envp[]);

v: arguments are passed by array argv at run-time.
e: extra arguments can be specified in envp.
The most frequent use of execve() is in the child produced by a fork().
It never returns on success, but returns -1 on error. Why?
If it does return, you may want to use perror right after.

See: linux.die.net/man/2/execve.

Arnold’s Examples
www.cs.toronto.edu/~arnold/209/12s/lectures/process/index.html

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 29 / 39

https://linux.die.net/man/2/execve
http://www.cs.toronto.edu/~arnold/209/12s/lectures/process/index.html
https://utm.calendar.utoronto.ca/course/csc209h5

exec: Front-Ends

Various C library functions, all with names beginning with exec, are layered on top of
the execve() system call. Each of these functions provides a different interface to
the same functionality. The front-end functions differ mainly in how they are called.

#include "unistd.h"
extern char **environ;
int execve(const char *filename, char *const argv[], char *const envp[]);
// front-ends
int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ..., char * const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[], char *const envp[]);

See: linux.die.net/man/3/exec.

How do they stack?
Try tracing all of these functions in codebrowser.dev.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 30 / 39

https://linux.die.net/man/3/exec
https://codebrowser.dev/
https://utm.calendar.utoronto.ca/course/csc209h5

exec: Front-Ends

Function
Spec of Program File
(-, p)

Spec of Arguments
(v,l)

Source of Environment
(e,-)

execl() pathname list caller’s environ
execle() pathname list envp argument
execlp() filename + $PATH list caller’s environ
execv() pathname vector (array) caller’s environ
execve() pathname vector (array) envp argument
execvpe() filename + $PATH vector (array) envp argument
execvp() filename + $PATH vector (array) caller’s environ

The characters in the function name exec* can be informative.

l: arguments are statically known at at compile time.
v: arguments are passed by array argv at run-time.
e: extra arguments can be specified in envp.
p: if the program isn’t found in the current directory, it’ll search in $PATH.

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 31 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

exec: Safety & Security

Because this is C, there are some safety/security implications programmers should
consider. Using execlp and execvp can be very dangerous when used improperly.

Why? What makes these two special?

Hint: Section 27.2.1 of The Linux Programming Interface by Michael Kerrisk.

Try looking up other vulnerabilities of exec functions…

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 32 / 39

https://search.library.utoronto.ca/details?10030432
https://utm.calendar.utoronto.ca/course/csc209h5

exec: Practice!

1 What’s the difference between these?

execle("/bin/ls", "ls", NULL, NULL);

char* args[] = {"ls", NULL};
execve("/bin/ls", args, NULL);

2 Write a program similar to yes that just prints no without the use of loops.

3 Write two programs tick and tock that print() their respective names and
call each other after a second has passed (for a specified number of seconds).

You can’t use loops.
You can use sleep(), atoi(), and sprintf.

4 If you’re feeling brave, try to write a single binary to mimic tick and tock.

Hint: it’s easier if the binary is store somewhere on the $PATH.
Hint: try using argv[0] just like for no.

Sample Solution
github.com/rhubarbwu/csc209/blob/master/lectures/lec08/txck.c

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 33 / 39

https://github.com/rhubarbwu/csc209/blob/master/lectures/lec08/txck.c
https://utm.calendar.utoronto.ca/course/csc209h5

Section 5

Putting it Together

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 34 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Putting it Together

A shell can fork and exec to execute other programs. For example…

1 Shell process p waits for keyboard input.
2 You type ls.
3 Shell forks child process c.
4 Process c uses an exec function to run ls.
5 Process p calls wait to wait for c to terminate, and then prints new prompt.

The skeleton might look like this:

while (1) { // infinite
print_prompt();
read_command(command, parameters);
if (fork()) wait(&status); // parent
else execve(command, parameters, NULL); // children

}

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 35 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Putting it Together: Arnold’s Examples (1)

int main() {
int x = fork();
if (x == 0) { /* child */

execl("/bin/ls", "ls", (char *)NULL);
perror("/bin/ls");
return 1;

}
/* parent */
int status;
wait(&status);
printf("exit status %d\n", status >> 8);
return 0;

}

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 36 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Putting it Together: Arnold’s Examples (2)

int main() {
for (int num = 2; num > 0; num--) {

if (fork() == 0) { /* child */
execl("/bin/ls", "ls", (char *)NULL);
perror("/bin/ls"); // should never get here!!
exit(1);

}
}
/* parent */
int status;
while (wait(&status) > 0)

printf("Parent: exit status %d\n", WEXITSTATUS(status));
return 0;

}

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 37 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Putting it Together: Arnold’s Examples (3)

int main() {
if (fork() > 0) { /* parent */

int status, pid = wait(&status);
printf("pid %d exit status %d\n", pid, status >> 8);
return 0;

}
/* child */
close(1); // 1==stdout
// NOTE: the next open takes the first open fd (=1).
if (open("file", O_WRONLY|O_CREAT|O_TRUNC, 0666) < 0) {

perror("file"); return 1;
}
// where is stdin coming from, stdout going to?
// remember, command run by exec inherits all open fds!
execl("/bin/ls", "ls", (char *)NULL);
perror("/bin/ls"); return 1;

}

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 38 / 39

https://utm.calendar.utoronto.ca/course/csc209h5

Finale: Don’t Try This At Home

The University of Toronto will not be held liable for any data loss or system
damage resulting from the use of the following program.

// C program Sample for FORK BOMB
// It is not recommended to run the program as
// it may make a system non-responsive.
#include "stdio.h"
#include "sys/types.h"
#include "unistd.h"

int main() {
while(1) fork();
return 0;

}

Read about the fork bomb: www.geeksforgeeks.org/fork-bomb/

Processses CSC209: Software Tools & Sys Prog. March 6, 2023 39 / 39

https://www.geeksforgeeks.org/fork-bomb/
https://utm.calendar.utoronto.ca/course/csc209h5

	Processes
	Termination & Status
	Processes: Test Your Understanding
	Loading into a Process (exec)
	Putting it Together

