
Low-Level I/O & Signals
CSC209H5: Software Tools & Systems Programming

Robert (Rupert) Wu
rupert.wu@utoronto.ca

Department of Computer Science
University of Toronto

Feb 27, 2023

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 1 / 38

https://www.cs.toronto.edu/~rupert/
mailto:rupert.wu@utoronto.ca
https://web.cs.toronto.edu
https://web.cs.toronto.edu
https://utm.calendar.utoronto.ca/course/csc209h5


Lesson Plan

1 Bitwise algebra and manipulation
2 Deep dive into low-level file IO
3 Error handling
4 Signals
5 Break (~15min)
6 Midterm Test at 7pm

Acknowledgements
Part of the slides are borrowed from Andi Bergen.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 2 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Section 1

Bit Manipulation

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 3 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Bitwise Operators: Basics

All data is composed of bits. Numerics and numerical macros/aliases can be
manipulated with bitwise operators.

Flip/negation (NOT): ~x
Union (inclusive-OR): x|y
Intersection (AND): x&y
Exlusive-OR (XOR): x^y

unsigned x = 0;
printf("x = %u\n", x);
printf("~x = %u, %u\n", ~x, UINT_MAX);

unsigned y = 7;
printf("7|9 = %u\n", y | 9);
printf("7&9 = %u\n", y & 9);
printf("7^9 = %u\n", y ^ 9);

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 4 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Bitwise Operators: Shifts

All data is composed of bits. Numerics and numerical macros/aliases can be
manipulated with bitwise operators.

Bit-Shifts: x<<y, x>>y
Right bit-shift >> is logical on unsigned numbers.
Right bit-shift >> is arithmetic on signed numbers.
You can (cheaply) scale numbers to powers of 2 this way.

for (unsigned z = 1; z < UPPER; z++) {
printf("Computing powers of 2 scaled by %u...\n", z);
for (unsigned i = 0; i < UPPER; i++)

if (i == 11) printf("%u*(2^%u) = %u\n", z, i, z << i);
}
int s = -12815;
printf("s>>2 = %d\n", s >> 2); // s/4
printf("s>>2>>3 = %d\n", s >> 2 >> 3); // s/4/8
unsigned u = 12815;
printf("u>>1 = %u\n", u >> 1); // u/2
printf("u>>7>>3 = %u\n", u >> 7 >> 3); // u/7/3

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 5 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Section 2

Low-Level File I/O

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 6 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


File I/O: File Descriptors

Figure 1: Example of FDs pointing to inodes.

A file descriptor (FD) is a number (non-negative integer) that uniquely identifies an
open file in a computer’s operating system. It describes a data resource, and how
that resource may be accessed.

www.computerhope.com/jargon/f/file-descriptor.htm

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 7 / 38

https://www.computerhope.com/jargon/f/file-descriptor.htm
https://utm.calendar.utoronto.ca/course/csc209h5


File I/O: Streams, File Descriptors & Pointers

Streams are files to which data is written or from which data is read. They’re
accessed through file pointers (FILE * from <stdio.h>) that wrap around FDs. The
following default streams (FDs) are provided by <stdio.h>.

stdin (0): default input; typically from user keyboard or pipes.
stdout (1): default output; usually to terminal screen or pipes.
stderr (2): default error; also to terminal screen.
Use > to redirect stdout, and 2> to redirect stderr

> overwrites the output file, >> appends to it.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 8 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


File I/O: Opening & Closing

FILE *fopen(const char *filename, const char * mode);

A file filename is opened with fopen() in a mode {r|w|a}{|+} to perform the
following operations. Returns a file pointer that wraps the FD. The pointer is NULL if
we fail to open the file (often because the file doesn’t exist or your process doesn’t
have permission).

action\mode r w a r+ w+ a+

read yes no no yes yes yes
write no yes no yes yes yes
append no no yes no no no
file exists ok ok ok ok truncate append
doesn’t exist fail create create fail ok create

int fclose(FILE *stream);

stream: a FILE * opened by fopen()/freopen().
returns: 0 if closed properly, EOF otherwise.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 9 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


File I/O: Reading & Writing

Reading
1 getchar(): read a character from stdin.
2 fgetc(): read a single character from the file.
3 fgets(): read strings from files.
4 fscanf(): formatted input from a file.
5 fread(): block of raw bytes from files; useful for binary files.

Examples: e1.c, e2.c.

Writing
You can use putchar() to write a character to stdout.
size_t fwrite(const void *ptr, size_t size,

size_t nmemb, FILE *stream)
Alternatively, use fwrite() to write nmemb elements (each size large) from *ptr to
stream.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 10 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Low-Level I/O: A Deep Dive

The aforementioned library functions from stdio.h are high-level conveniences! But
sometimes we need to work with lower-level functions. When we want to do low-level
I/O, to bypass the buffering and abstractions provided by the C standard library, we
must use system calls, namely:

1 open()
2 close()
3 read()
4 write()

Many different flags, errors, corner cases, etc. to consider.

See man 2 <sys-call> for each.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 11 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Low-Level I/O: Be Careful!

Proper usage of low-level I/O often requires looping and handling error conditions.

ssize_t ret;
while (len != 0 && (ret = read(fd, buf, len)) != 0) {

if (ret == -1) {
if (errno == EINTR)

continue;
perror("read");
break;

}
len -= ret;
buf += ret;

}

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 12 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Low-Level I/O: File Descriptors

As before, we use file descriptors (FDs), serving as indices for open files.

Figure 2: from tinf2.vub.ac.be/~dvermeir/manuals/uintro/uintro.html

Each process has its own file descriptor (FD) table. File descriptor N in process A
can refer to a different file than file descriptor N in process B.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 13 / 38

https://tinf2.vub.ac.be/~dvermeir/manuals/uintro/uintro.html
https://utm.calendar.utoronto.ca/course/csc209h5


Low-Level I/O: File Descriptors vs. Descriptions

Figure 3: Mapping between file descriptors and file descriptions
Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 14 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Low-Level I/O: exec and File Descriptors

When a program calls exec, its process is replaced by a new program that still
retains the FDs of the original process.

But upon replacing the process image with the new program, the FILE * variables
are gone (memory leaks?).

So the new program must either:

1 Perform low-level I/O using the read() or write() system calls; or

2 Use fdopen() to associate a new buffered file stream with an existing open file
descriptor.

FILE *fdopen(int fd, const char *mode);

More on exec/execl when we discuss processes in-depth.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 15 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Low-Level I/O: dup/dup2

int dup(int oldfd);
int dup2(int oldfd, int newfd);

dup returns a new FD that refers to the same file as oldfd.
dup2 does the same, but lets you specify the value of new FD.

dup2 first closes newfd if already in use.

Output Redirection with dup2
int main (void) {

int fd = open("lsout", O_WRONLY | O_CREAT, 0600);
if (fd == -1) {

perror("open");
exit(1); }

dup2(fd, STDOUT_FILENO);
execl("/bin/ls", "ls", "-l", (char *)NULL);
perror("execl");
return 1; // why are we always returning 1?

}

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 16 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Low-Level I/O: Arnold’s Examples

dup: [www]/lectures/arnold/w07/lowLevelFileIO/lowLevelFileIO6.c

dup2: [www]/lectures/arnold/w07/lowLevelFileIO/lowLevelFileIO7.c

where [www] = mcs.utm.utoronto.ca/~209/23s

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 17 / 38

https://mcs.utm.utoronto.ca/~209/23s/lectures/arnold/w07/lowLevelFileIO/lowLevelFileIO6.c
https://mcs.utm.utoronto.ca/~209/23s/lectures/arnold/w07/lowLevelFileIO/lowLevelFileIO7.c
https://utm.calendar.utoronto.ca/course/csc209h5


Section 3

Error Number (errno)

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 18 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Error Number (errno)

The macro errno is implemented (system-dependently) as variable int.

#define errno /*implementation-defined*/

At the start of a program, errno has the value 0.
Library functions can write strictly positive int to errno to indicate the last
error that occurred.

perror is provided by stdio.h and used to print the associated description.
FILE *f = fopen("non_existent", "r");
if (f == NULL)

perror("fopen() failed");
else

fclose(f);
Possible output:
fopen() failed: No such file or directory
strerror likewise produces the description string.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 19 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Error Number (errno)

The macro errno is implemented (system-dependently) as variable int.

#define errno /*implementation-defined*/

errno doesn’t force your program to fail, but you can use it as an excuse to.
In addition to gdb, valgrind, it can be used as validation (more useful than
assert.h) to aid debugging.

Issues pre-C11
Previously errno was supposedly a macro but also unspecified whether it was a
macro or declared identifier. As of C11, errno is a macro.

More reading
See descriptions and demo in en.cppreference.com/w/c/error/errno.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 20 / 38

https://en.cppreference.com/w/c/error/errno
https://utm.calendar.utoronto.ca/course/csc209h5


Section 4

Signals

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 21 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: An Introduction

Signals are unexpected, asynchronous events that can happen at any time.
Unless you make special arrangements, most signals terminate your process.
Signals are a basic form of inter-process communication.
You have already been sending signals through the shell, e.g., via the ctrl+c
and ctrl+z key combinations.

What does ctrl+c do?
The terminal sends the SIGINT signal to the process.
By default, SIGINT (“Interrupt from keyboard”) terminates the process.

What about ctrl+z?
Similarly, ctrl+z triggers a SIGTSTP signal (“Stop typed at terminal”)

The full list
On Linux, you can find a list in /usr/include/bits/signum.h.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 22 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Punishment for Misbehaviour

The kernel sends several other signals to terminate processes when a program
misbehaves:

SIGSEGV Invalid memory reference
SIGFPE Floating-point exception
SIGILL Illegal instruction

There are also the user-defined signals SIGUSR1 and SIGUSR2 that we can use for our
own purposes. By default they terminate the process.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 23 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Sending from the Shell

To send a signal SIGNAME to one or more processes given their process ID(s) pid’s,
use kill. Why is called kill?

$ kill -SIGNAME <pids>

For example:

$ kill -SIGINT 11248
$ kill -SIGKILL 11248

Don’t let the name kill fool you! It’s generally for sending signals, but often used
to send SIGKILL, hence the name.

Unstoppable signals
SIGKILL and SIGSTOP cannot be caught, blocked, or ignored (see man 7 signal).

Sending signals between processes
A process can send a signal to another process using the kill() system call.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 24 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Handling

There are three options for handling signals:

1 Use the default action SIG_DFL.
2 Ignore the signal (i.e., the signal does nothing to your process).
3 Write a signal handler function, which will be called automatically upon receipt

of a signal.

Changing the Default Action
Two options for changing the default signal action:

2 The signal() C standard library function.
3 The sigaction() system call.

signal() is cross-platform but more limited in scope, whereas sigaction() is more
flexible but found only on POSIX.1-compliant systems.

More in the GNU C library manual
www.gnu.org/software/libc/manual/html_node/Signal-and-Sigaction.html

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 25 / 38

https://www.gnu.org/software/libc/manual/html_node/Signal-and-Sigaction.html
https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Handlers

Related code is provided signals.h.

signal simply points each signal to a handler function.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>
void handler() { printf("in signal handler\n"); }
int main() {

for (int i = 0; i < 256; i++)
signal(i, handler); // run handler() for every signal

printf("starting\n");
sleep(10);
return 0;

}

Arnold’s Examples
mcs.utm.utoronto.ca/~209/23s/lectures/arnold/w07/signals/4handler.c

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 26 / 38

https://mcs.utm.utoronto.ca/~209/23s/lectures/arnold/w07/signals/4handler.c
https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Actions

Related code is provided signals.h.

sigaction is the name of a system call function.

int sigaction(int sig,
const struct sigaction *act,
struct sigaction *oldact);

And it’s also the name of the struct type that it takes as the 2nd and 3rd arguments:

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};

sa_handler can be set to SIG_IGN (ignore), SIG_DFL (default action), or the
address of a handler function (see man 2 sigaction).

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 27 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Actions (Example)

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
int i = 0;
void handler(int signo) {

fprintf(stderr, "Sig %d; total %d.\n", signo, ++i);
}
int main(void) {

struct sigaction newact;
sigemptyset(&newact.sa_mask);
newact.sa_flags = 0;
newact.sa_handler = handler;
if (sigaction(SIGINT, &newact, NULL) == -1) exit(1);
if (sigaction(SIGTSTP, &newact, NULL) == -1) exit(1);
for(;;); //Infinite loop

}

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 28 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Limitations

Signals are useful, but there are some drawbacks.

Information
Signals convey no information, aside from what type of signal (e.g., SIGINT,
SIGUSR1) it is.
Generally only used to indicate abnormal conditions: Not for data exchange.

Queuing
Multiple instances of the same signal do not queue.
If signal Y is sent while a previously-sent signal X is pending, then the second Y
is lost.
Example, if your process receives a SIGCHLD (Child stopped or terminated), it
may be that only one child process has terminated, or that multiple child
processes have terminated.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 29 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Aside: Types and Portability

What is a sigset_t anyway? Good opportunity to demonstrate the primary need for
typedef: allowing us to write portable code.

From x86_64-linux-gnu/bits/types/sigset_t.h:

typedef __sigset_t sigset_t;

From x86_64-linux-gnu/bits/types/__sigset_t.h:

#define _SIGSET_NWORDS (1024 / (8 * sizeof (unsigned long int)))
typedef struct {

unsigned long int __val[_SIGSET_NWORDS];
} __sigset_t;

The type __sigset_t might be declared differently depending on your system, but
code you write will be portable thanks to typedef. Try searching for the #include
directive in signal.h.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 30 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signal: Sets as Bit Vectors

A signal set (sigset_t) is a bit vector that specifies the set of signals to block;
operate on them using the following standard library functions:

1 int sigemptyset(sigset_t *set);
2 int sigfillset(sigset_t *set);
3 int sigaddset(sigset_t *set, int signo);
4 int sigdelset(sigset_t *set, int signo);
5 int sigismember(const sigset_t *set, int signo);

See man 3 sigsetops for usage.

Note: recall the earlier discussion on bitwise operators.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 31 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Masking During Program Execution

As our program may receive signals spontaneously at any time, we may need to block
some signals from being delivered at an inopportune moment (e.g., writing to disk).

This temporary block is different from ignoring a signal entirely.
Use the sigprocmask() system call to examine or change the set of blocked
signals, via a mask (i.e., a bit vector representing a set of signals).

Here’s an example:

$ sigset_t set, oldset;
$ sigemptyset(&set);
$ sigaddset(&set, SIGINT);
$ sigprocmask(SIG_BLOCK, &set, &oldset);
/*... Critical operation ...*/
$ sigprocmask(SIG_SETMASK, &oldset, NULL);

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 32 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Masking During Handler Execution

From man 2 sigaction:
sa_mask specifies a mask of signals which should be blocked (i.e., added to
the signal mask of the thread in which the signal handler is invoked) during
execution of the signal handler. In addition, the signal which triggered the
handler will be blocked, unless the SA_NODEFER flag is used.

Happy Birthday Example (Adapted from Karen’s)
github.com/rhubarbwu/csc209/blob/master/lectures/lec07/birthday.c

Try uncommenting both sigaction calls.
You might notice you’re stuck!
Open another terminal and use kill.

Then, for SIGINT, try using sigaddset instead of sigaction.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 33 / 38

https://github.com/rhubarbwu/csc209/blob/master/lectures/lec07/birthday.c
https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Async Safety

From man 7 signal-safety:
Suppose a program is in the middle of a call to a stdio function such
as printf where the buffer and associated variables have been partially
updated. If, at that moment, the program is interrupted by a signal handler
that also calls printf, the second call to printf will operate on inconsistent
data, with unpredictable results.

Happy Birthday Example (Adapted from Karen’s)
github.com/rhubarbwu/csc209/blob/master/lectures/lec07/birthday.c

Uncomment the printf and sleep calls in the infinite loop.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 34 / 38

https://github.com/rhubarbwu/csc209/blob/master/lectures/lec07/birthday.c
https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Writing to a Broken Pipe

Remember this?

$ ssh cslab
rupert@apps0:~$ client_loop: send disconnect: Broken pipe

This happens when an ssh connection is left in-active for a long time.

SIGPIPE is sent to a process that tries to write to a pipe or to a socket that does not
have any readers.

More about processes and pipes later…

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 35 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Signals: Other Ways of Sending

Recall grep searches for matching patterns.
pgrep search PID’s for matching program names.

For kill sends signals by PID(s).
pkill sends signals by matching program names.
$ pkill -SIGINT hbd
$ pkill hbd

Some other applications like htop also allow sending signals.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 36 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Section 5

Midterm Test

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 37 / 38

https://utm.calendar.utoronto.ca/course/csc209h5


Midterm Test

Time: 7-9pm
Location: Instructional Centre (IB)

IB110: LEC0102/0103
IB120: LEC0101/0104
Go to your assigned room.

Use the washroom and have a snack beforehand.
Sit at least two seats apart from each other.
No aids of any kind; put your devices away.

Low-Level I/O & Signals CSC209: Software Tools & Sys Prog. Feb 27, 2023 38 / 38

https://utm.calendar.utoronto.ca/course/csc209h5

	Bit Manipulation
	Low-Level File I/O
	Error Number (errno)
	Signals
	Midterm Test

