
N-D Arrays, Dynamic Memory & Structs
CSC209H5: Software Tools & Systems Programming

Robert (Rupert) Wu
rupert.wu@utoronto.ca

Department of Computer Science
University of Toronto

Feb 6, 2023

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 1 / 34

https://www.cs.toronto.edu/~rupert/
mailto:rupert.wu@utoronto.ca
https://web.cs.toronto.edu
https://web.cs.toronto.edu
https://utm.calendar.utoronto.ca/course/csc209h5

Lesson Plan

1 Multidimensional Arrays
2 Dynamic Memory Management
3 Structures (Structs)
4 Linked-Lists
5 ArrayLists

Acknowledgements
Part of the slides are borrowed from Karen Reid and Andi Bergen.

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 2 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Section 1

Multidimensional (N-D) Arrays

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 3 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Multidimensional (N-D) Arrays

Arrays can be multi-dimensional (N-D) to represent higher dimensional tensors.

const int Y = 0, R = 1, B = 2, G = 3, O = 4, W = 5;
int rubiks_face[3][3] = {

{Y, Y, R},
{W, G, B},
{Y, Y, R}};

The name of a two-dimensional array is a pointer to a pointer – a double pointer.
What’s the type of the name of a three-dimensional array like rubiks_cube?

int rubiks_cube[6][3][3]; // 6 faces, int ***

For any two-dimensional array A, the expression A[k] is a pointer to the first element
in row k of the array.

int k = 2, *p = rubiks_cube[k];
for (; p < rubiks_face[k] + 2; p++) *p = Y;

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 4 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Multidimensional Arrays: Row-Major Order

Figure 1: row-major order of a 3x3 matrix

Although we visualize two-dimensional arrays as tables, that’s not the way they’re
actually stored in computer memory. C stores arrays in row-major order, with row 0
first, then row 1, and so forth.

int *row_ptr = rubiks_face[0];
int *square_ptr = &row_ptr[2]; // pointing to rubiks_face[0][2]
square_ptr++; // pointing to rubiks_face[1][0]

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 5 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Multidimensional Arrays: Go Big or Go Home

2/3-D arrays are common in modelling discrete surfaces/volumes. But in theory you
can have any number of dimensions (memory permitting).

int square[2][2], cube[3][3][3], hypercube7[7][7][7][7][7][7][7];

Thanks to pointers, you can navigate in many ways by indexing.

// dimension-wise indexing
int hypercube7_mid = hypercube7[3][3][3][3][3][3][3];
// direct indexing
int cube_last = *(**cube + i*N*N + j*N + k);
for (int i = 0; i < 2; i++) {

for (int j = 0; j < 2; j++) square[i][j] = i * 2 + j;
}
// arithmetic indexing
for (int p = 0; p < 4; p++) {

printf("%d ", square[p / 2][p % 2]);
if (p % 2 == 1) printf("\n");

}
N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 6 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Multidimensional Arrays: Indexing & Traversal

How do you traverse down a column? Or along arbitrary dimension(s)? You can fix
some of the indexing values by array or pointer arithmetic.

// different dimensions, 3 rows, 4 columns
int rect[3][4];
for (int p = 0; p < 12; p++) rect[p / 4][p % 4] = p;

// first and last columns, and second row
for (int i = 0; i < 3; i++) printf("%d\n", rect[i][0]);
for (int i = 0; i < 3; i++) printf("%d\n", *(rect[i] + 3));
for (int j = 0; j < 4; j++) printf("%d ", (*rect[1] + j));

Full code
github.com/rhubarbwu/csc209/blob/master/lectures/lec05/traversal.c

Traversing in an Arbitrary Order
Example:
github.com/rhubarbwu/csc209/blob/master/lectures/lec05/3to3.c

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 7 / 34

https://github.com/rhubarbwu/csc209/blob/master/lectures/lec05/traversal.c
https://github.com/rhubarbwu/csc209/blob/master/lectures/lec05/3to3.c
https://utm.calendar.utoronto.ca/course/csc209h5

Section 2

Dynamic Memory

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 8 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Pointers

1 & “returns” the address of any named variable, * dereferences any address.
2 Only for variable declaration, * serves to identify variables that are pointers.
3 When reading/writing a pointer variable without dereferencing, you are

reading/writing the address contained in the pointer.

Casting Pointers
Arbitrary pointers can be cast as typed pointers. What does the following print?
#include <stdio.h>
int main() {

int x = 0x00616263; char *y = (char *)&x;
printf("%s\n", y); // cba
return 0;

}
How? See ASCII Table
Notice the ordering of the bytes.
You are expected to understand hexadecimal…

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 9 / 34

http://www.asciitable.com/
https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Variables

Local Variables
Local variables are allocated in the function’s stack frame.

In gdb, backtrace prints list of stack frames, tracing from currently-executing
function up to main().

When a function returns, its stack frame is deallocated.
The freed-up space on the stack can be re-used by a future function that is called.

Global Variables
Global variables are stored in another region of memory.

Includes read-only string literals.
These remain in memory for the entire duration that the program is running.

Dynamically Allocated Variables
Memory is allocated on the heap, referenced by a pointer.
Persists on the heap even after the allocating function returns.

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 10 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Figure 2: memory model

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 11 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Allocation

The most basic structure to allocate memory for is an array(list).

In Java
This is done automatically when creating objects.
ArrayList createArray() {

ArrayList a = new ArrayList();
return a;

}

In C
You’ll have to be explicit using malloc, which takes the number of bytes for the
structure and returns a pointer to it.
int *createArray() {

int *a = malloc(sizeof(int)*ARRAY_LEN);
return a;

}

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 12 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Allocation with malloc

The C library function malloc allocates the requested memory (of size bytes) and
returns a void pointer to it.

void *malloc(size_t size);

This function returns a void * to the allocated memory or NULL if the request fails.

The pointer generally needs to be cast to be used as a typed pointer.
A return value of NULL is often a result of running out of memory.

char *str = (char *) malloc(15);
if (str == NULL) exit(1); // probably out of memory
strcpy(str, "tutorialspoint");
printf("String = %s, Address = %u\n", str, str);

Use top/*top to see how much memory your system has. Then try to allocate more.

Source
www.tutorialspoint.com/c_standard_library/c_function_malloc

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 13 / 34

https://www.tutorialspoint.com/c_standard_library/c_function_malloc
https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Allocation with calloc

If you allocated with malloc, the memory region might contain garbage. calloc is a
way to allocate memory while zeroing it too.

void *calloc(size_t nitems, size_t size);

It has different parameters, allocating space for nitems elements, each of size bytes.

int n = 1000000;
long long *a = calloc(n, sizeof(long long)); // array of n long long
printf("from calloc\n");
for (int i = 0; i < n; i++)

printf("%lld ", b[i]); // a bunch of 0s
printf("\n");
free(a);

calloc is not commonly used because most scenarios don’t require 0-initialization,
and doing so introduces computational costs, especially for large pieces of memory.

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 14 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Reallocation with realloc

The C library function realloc attempts to resize to size bytes the memory block
pointed to by ptr that was previously allocated with a call to malloc, calloc or
realloc

void *realloc(void *ptr, size_t size)

If ptr is NULL, a new block is allocated and a pointer to it is returned.
If size is 0 and ptr points to an existing block of memory, the memory block
pointed by ptr is deallocated and a NULL pointer is returned.

str = (char *) realloc(str, 25);
strcat(str, ".com");
printf("String = %s, Address = %u\n", str, str);

Source
www.tutorialspoint.com/c_standard_library/c_function_realloc

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 15 / 34

https://www.tutorialspoint.com/c_standard_library/c_function_realloc
https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Leaks

Figure 3: it’s very relatable

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 16 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Freeing

If we’re done with an object, can we reclaim the memory space?

In Java, the garbage collector asynchronously frees up memory when an object
is no longer referenced by any variable.

In Rust, each referenced piece of memory has a lifetime declared at runtime, so
there’s no garbage to speak of.

In C/C++, you have to collect your own garbage.

Use free() to free up allocated space that is no longer being used.
Failure to do so results in memory leaks, which unnecessarily occupy space.
These can occur if you lose references to these piece of memory.
Use *top (like htop) to check memory consumption.
Use valgrind to detect memory leaks.

Arnold’s Examples
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/malloc.zip

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 17 / 34

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/malloc.zip
https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Pointers to (and Arrays of) Pointers

Let’s model the following ℝ𝐾 ↦ ℝ3 linear system W𝑇x + b.

x ∈ ℝ3, W ∈ ℝ𝐾×3, b ∈ ℝ3

x and b are easy since they’re vectors.

int K = 1000;
double *x = malloc(K * sizeof(double));
double *b = calloc(K, sizeof(double));

But W requires more care. Same goes for batching 𝑚 inputs as X ∈ ℝ𝐾×𝑚. You
must allocate memory top-down.

double **W = malloc(3 * sizeof(double *));
for (int i=0; i<3; i++)

W[i] = malloc(K * sizeof(double));

And afterwards, you should free bottom-up.

for (int i=0; i<3; i++) free(W[i]);

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 18 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Persistence on the Heap

Stack memory declared in a scope is only accessible therein (including function calls).
Otherwise, what’s not caught at compile-time can result in runtime memory errors.

int *get_stack_ptr() { int *ptr; return ptr; }
int main() {

while (1) { int x = 0; } x = 1; // compile error
int *ptr = get_stack_ptr();
int y = *ptr; // seg fault

}

Heap memory persists after function calls return, to be accessed with pointers.

int *get_heap_ptr() { int *ptr = malloc(sizeof(int)); return ptr; }
int main() {

int *ptr = get_heap_ptr();
int y = *ptr;
return 0;

}

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 19 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Exercises (Stack)

How big are these? Where do they live? And until when?

void fun1(char c) { // how big is c? where? until when?
float f; // how big is f? where? until when?

}
void fun2(int *i_ptr) {} // how big is i_ptr? where? until when?
int main() {

int i = 0; // how big is i? where? until when?
int *i_ptr = &i; // how big is i_ptr? where? until when?

char s[10] = {'h', 'i'}; // how big is s? where? until when?
char *s_ptr = s; // how big is s_ptr? where? until when?

int is[5] = {4, 5, 2, 5, 1}; // how big is is? where? until when?
fun2(i);
return 0;

}

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 20 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Exercises (Stack)

How big are these? Where do they live? And until when?

void fun1(char c) { // 1 on fun1 stack until fun1 returns
float f; // 4 on fun1 stack until fun1 returns

}
void fun2(int *i_ptr) {} // 8 on fun2 stack until fun2 returns
int main() {

int i = 0; // sizeof(int) on main stack until program ends
int *i_ptr = &i; // 8 on main stack until program ends

char s[10] = {'h', 'i'}; // 10 on main stack until program ends
char *s_ptr = s; // 8 on main stack until program ends

int is[5] = {4, 5, 2, 5, 1}; // 20 on main stack until program ends
fun2(i);
return 0;

}

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 21 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Exercises (Heap)

How about these? malloc and free make an appearance…

void fun1(int **i_ptr_ptr) { // what about i_ptr_ptr?
*i_ptr_ptr = malloc(sizeof(int) * 7); // what about *i_ptr_ptr?

}
int *fun2() {

int *i_ptr; // what about i_ptr?
i_ptr = malloc(sizeof(int)); // what about *i_ptr?
return i_ptr;

}
int main() {

int *i_ptr; // what about i_ptr?
fun(&i_ptr);
free(i_ptr);
i_ptr = fun2();
free(i_ptr);
return 0;

}
N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 22 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Exercises (Heap)

How about these? malloc and free make an appearance…

void fun1(int **i_ptr_ptr) { // 8 on fun1 stack until fun1 return
*i_ptr_ptr = malloc(sizeof(int) * 7); // 28 on heap until free call

}
int *fun2() {

int *i_ptr; // 8 on fun2 stack until fun2 return
i_ptr = malloc(sizeof(int)); // 4 on heap until free call
return i_ptr;

}
int main() {

int *i_ptr; // 8 on main stack until program ends
fun(&i_ptr);
free(i_ptr);
i_ptr = fun2();
free(i_ptr);
return 0;

}
N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 23 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Dynamic Memory: Exercises (Addresses)

Try drawing the memory model of the following code.

#include "stdio.h"
#include "stdlib.h"
void init(int *a1, int *a2, int n) {

for (int i = 0; i < n; i++) { a1[i] = i; a2[i] = 2*i+1; }
}
int main() {

int nums1[3], *nums2 = malloc(sizeof(int) * 3);
init(nums1, nums2, 2);
for (int i = 0; i < 3; i++) printf("%d %d\n", nums1[i], nums2[i]);
free(nums2);
return 0; }

Heap: 0x23c to 0x248.
Stack for init: 0x454 to 0x470.
Stack for main: 0x474 to 0x48c.
Let ?? represent garbage.

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 24 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Section Address Value Variable

Heap 0x23c
0x240
0x244

…
Stack frame init 0x454

0x458
0x45c
0x460
0x464
0x468
0x46c
0x470

Stack frame main 0x474
0x478
0x47c
0x480
0x484
0x488

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 25 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Section Address Value Variable

Heap 0x23c 1
0x240 3
0x244 ??

…
Stack frame init 0x454 0x474 a1

0x458 0x474 a1
0x45c 0x23c a2
0x460 0x23c a2
0x464 2 n
0x468 0, 1, 2 i
0x46c
0x470

Stack frame main 0x474 0 nums1[0]
0x478 1 nums1[1]
0x47c ?? nums1[2]
0x480 0x23c nums2
0x484 0x23c nums2
0x488 0, 1, 2, 3 i

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 26 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Section 3

Structs

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 27 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Structures: Motivation & Basics

Data is often structured, like in classes in object-oriented programming such as in
Java, or relational database schemes like SQL.

In C, we use the struct, which is a collection of members:

struct [structure tag] {
member definition;
...
member definition;

} [one or more structure variables];

Can be dynamically or statically allocated.
Can declare arrays of structs, pointers to structs…

Arnold’s Examples
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/structs.zip

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 28 / 34

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/structs.zip
https://utm.calendar.utoronto.ca/course/csc209h5

Structures: As a Type

A basic declaration can use an anonymous type.

struct { float lon, lat; } a, b;

However, commonly a struct is declared as an explicit type;

struct coordinate { float lon, lat; };
float euclidean(struct coordinate a, struct coordinate b);

Additionally, you can use typedef to create an alias for it.

typedef struct coordinate {
float lon, lat;

} Coordinate;
double euclidean(Coordinate a, Coordinate b);
float manhattan(Coordinate a, Coordinate b);
short time_zone(Coordinate a, Coordinate b);

Arnold’s Examples
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/structs.zip

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 29 / 34

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/structs.zip
https://utm.calendar.utoronto.ca/course/csc209h5

Structures: Alignment

As memory addresses implied, pieces of memory are aligned on the smallest
granularity of 4 bytes. Members of a struct are aligned on their largest member.

What is sizeof(struct student)? What if we reorder the members?

struct student {
char school[21]; // 21
int student_num; // +4 = 25, round to 28
char name[21]; // +21 = 49, round to 52

}; // 52

Consecutive members of the same size can be packed.

struct student {
int student_num; // 4
char name[21], school[21]; // +21+21 = +42 = 46, round to 48

}; // 48

Alignment is based on order and size of members. Although there exist compiler
optimizations that reorder the members to reduce memory footprint.

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 30 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Structures: Accessing Members

As seen before, members can be directly accessed using the dot . notation.

#include "math.h"
typedef struct coordinate { float lon, lat; } Coordinate;
float manhattan(Coordinate a, Coordinate b) {

return abs(b.lon - a.lon) + abs(b.lat - a.lat)
}
double euclidean(Coordinate a, Coordinate b) {

double dlon = (double)b.lon - (double)a.lon;
double dlat = (double)b.lat - (double)a.lat;
return sqrt(pow(dlon, 2) + pow(dlat, 2));

}

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 31 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Structures: Composition

A struct can contain anything; you can nest struct’s…

typedef struct box {
Coordinate c1, c2;

} Box;

And access inner members…

Coordinate c1 = {1.7, -2.3}, c2 = {3.08, 9.81};
Box b = {c1, c2};
int lon1 = b.c1.lon;
int lat2 = b.c2.lat;

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 32 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Structures: Pointers

Passing struct’s by value results in deep copies, which are consume a lot of stack
memory. Instead, as with arrays, we can pass struct’s by pointers.

typedef struct coordinate { float lon, lat; } Coordinate;
typedef struct box {

Coordinate *c1, *c2;
} Box;

Why are we still storing two float values in Coordinate and not float*?

Then we use pointer operators to access through pointers.

double range(Box b) {
return euclidean(*(b.c1), *(b.c2));

}

Commonly, the arrow -> notation is used instead for readability.

double area(Box b) {
return abs(b.c2->lon - b.c1->lon) * abs(b.c2->lat - b.c1->lat);

}
N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 33 / 34

https://utm.calendar.utoronto.ca/course/csc209h5

Structures: Linked-Lists: A Taster

A very common data structure that maintains ordering with easy insertions/deletions
is the linked-list (LL). Here’s a sample struct implementation.

typedef struct llnode {
struct llnode * next;
int data;

} LLNode;

Each LLNode holds a pointer next to another LLNode, so they can refer to each
other. More next week…

Arnold’s Code
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/linkedList.zip

Homework
Your lab exercise this week will be to implement the ArrayList.
A common interview question is reversing a linked-list. Try this too!

N-D Arrays, Dynamic Memory & Structs CSC209: Software Tools & Sys Prog. Feb 6, 2023 34 / 34

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/linkedList.zip
https://utm.calendar.utoronto.ca/course/csc209h5

	Multidimensional (N-D) Arrays
	Dynamic Memory
	Structs

