
Memory & Compilation
CSC209H5: Software Tools & Systems Programming

Robert (Rupert) Wu
rupert.wu@utoronto.ca

Department of Computer Science
University of Toronto

January 30, 2023

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 1 / 52

https://www.cs.toronto.edu/~rupert/
mailto:rupert.wu@utoronto.ca
https://web.cs.toronto.edu
https://web.cs.toronto.edu
https://utm.calendar.utoronto.ca/course/csc209h5

Lesson Plan

To keep in sync with the other sections we’ll do some review (𝜌) from last week’s
slides, which were updated.

1 Memory, Arrays, Pointers (𝜌)
2 Functions (𝜌)
3 Strings as Arrays
4 Compilation
5 Build Automation (Makefiles)

Acknowledgements
Part of the slides are borrowed from Karen Reid and Andi Bergen.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 2 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Section 1

Memory & Arrays (review)

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 3 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Memory (𝜌)

The operating system manages the real memory based on hardware.
From our perspective we’re working with virtual memory on top.
Bytes are typically the smallest unit of memory.

Each unit has an address, which is an integer-like numeric that can be operated on
with integers.

The address of a variable/struct is the address of its first byte.
Local-scope variables are typically allocated memory on the stack.
Dynamic allocation to the heap is explicitly handled (seen later).

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 4 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Arrays: Declaration & Allocation (𝜌)

Arrays are sequence of uniformly-sized elements stored in a contiguous region of
memory. They’re declared to contain types (such as characters or numerics) and an
array size between brackets [size].

float A[65];
A[0] = 6.0;
A[1] = 3.141592654;
printf("%f\n", A[1]); // bad approx of pi
printf("%f\n", A[2]); // undefined

A normal declaration assigns a region of memory to the array, but doesn’t normally
re-initialize the values.

Static Arrays
However, static arrays do initialize values as 0.
static long B[4];
printf("%ld\n", B[3]); // 0

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 5 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Arrays: Initialization (𝜌)

Alternatively, you can directly initialize arrays with values.

Values in the array beyond the initializer are initialized as 0.

int csc209[4] = {2, 0, 9}; // csc209[3] == 0

Due to type inference, the size of such declarations is optional.

int csc369[] = {3, 6, 9}; // size inferred

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 6 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Arrays: Bounds in Memory (𝜌)

C doesn’t require that subscript bounds be checked; if a subscript goes out of
range, the program’s behavior is undefined.

No run-time check of array bounds: behaviour exceeding bounds is undefined. If
lucky, it might (appear to) work with no side effects.

Sometimes it’ll do something random, harmless or not.
Worst-case, it might crash the program or OS.

int csc469 = {2, 2, 0, 8};
csc469[4] = 1; // will likely crash with stack smashing

Warning: It is the programmer’s responsibility to keep track of the size of an
array! Take care not to violate the bounds of the array.

Arrays: Arnold’s Examples
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/arraysVarLength.c

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 7 / 52

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/arraysVarLength.c
https://utm.calendar.utoronto.ca/course/csc209h5

Pointers: Arithmetic (𝜌)

Pointers are technically numbers, so you can add integers to them. Then, you can
access other values with relative pointers.

If p points to A[i], other A[j] can be accessed by performing arithmetic on p.

C supports exactly these three forms of pointer arithmetic:

pointer + integer; pointer - integer; or pointer - pointer

Adding an integer j to a pointer p yields a pointer to the element j places after
the one that p points to. That is, if p points to the array element A[i], then
p+j points to A[i+j].

In other words, A + i is the same as &A[i] because both represent a pointer to
element i of A.
Similarly, ∗(A+i) is equivalent to A[i] because both represent i’th element of A.
Assuming 32-bit integers, each increment on a pointer will move 4 bytes down,
giving us the pointer to the next element.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 8 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Pointers: Arithmetic (Memory Addresses) (𝜌)

#include <stdio.h>
int main () {

int A[] = {1, 2, 4, 8, 16, 32, 64};
for (int i=0; i<6; i++)

printf("A[%d]: addr %x; val %d\n", i, &A[i], A[i]);
return 0;

}

Note the 4-byte intervals of consecutive addresses in contiguous memory.

A[0]: addr f4ec9730; val 1
A[1]: addr f4ec9734; val 2
A[2]: addr f4ec9738; val 4
A[3]: addr f4ec973c; val 8
A[4]: addr f4ec9740; val 16
A[5]: addr f4ec9744; val 32

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 9 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Pointers: Arithmetic (Memory Addresses) (𝜌)

#include <stdio.h>
int main () {

int A[] = {1, 2, 4, 8, 16, 32, 64};
for (int i=0; i<6; i++)

printf("A[%d]: addr %x; val %d\n", i, &A[i], A[i]);
return 0;

}

Another run… the addresses (or rather, base addresses) always change, depends on
memory.

A[0]: addr b49d4720; val 1
A[1]: addr b49d4724; val 2
A[2]: addr b49d4728; val 4
A[3]: addr b49d472c; val 8
A[4]: addr b49d4730; val 16
A[5]: addr b49d4734; val 32

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 10 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Pointers: Arnold’s Examples

mcs.utm.utoronto.ca/~209/23s/lectures/src/c/crazyPointers.c
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/pointersAndFunctions.c

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 11 / 52

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/crazyPointers.c
https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/pointersAndFunctions.c
https://utm.calendar.utoronto.ca/course/csc209h5

Section 2

Functions (review)

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 12 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Arguments by Value (𝜌)

C passes arguments by value. Implicit casting is performed on numerical function
arguments; beware of truncation!

#include "math.h"
#include "stdio.h"
int as_long(long l) { return l; }
float as_float(float d) { return d; }
int main() {

int nine_plus_ten = 21;
long massive = __LONG_MAX__ - nine_plus_ten;
printf("%ld -> %d\n", massive, as_int(massive));

double pi = M_PI; // approximate the approximation
printf("%1.32f -> %1.32f\n", pi / 2, as_float(pi) / 2);
return 0;

}

Full code
github.com/rhubarbwu/csc209/blob/master/lectures/lec04/arg_cast.c

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 13 / 52

https://github.com/rhubarbwu/csc209/blob/master/lectures/lec04/arg_cast.c
https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Arguments by Value (𝜌)

What does this do to mass? It’s being passed by value.

#include <stdio.h>
#define half_life 12
#define time 100

void decay(double mass) {
mass /= 2;

}
int main() {

double mass = 244817;
for (int i = 1; i < time; i++)

if (i % half_life == 1)
decay(mass);

printf("After %d, %lf remains.\n", time, mass);
return 0;

}

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 14 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Functions: We need pointers! (𝜌)

Easy access to and abstraction of complex structures.
Allows reference to the same data when desired.
Pointers consume less memory than deep copies.
Convenient null values for initialization/error-checking.

Pointer Arguments
Pointers allow you to pass primitives or structures by reference, rather than value.
Instead of copying and passing the entire structure, copy/pass the pointer(s) in
constant time.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 15 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Arguments by Reference (𝜌)

What about this? It’s passed by reference.

#include <stdio.h>
#define half_life 12
#define time 100

void approx_decay(double *mass_ptr) {
*mass_ptr /= 1.4142857;

}
int main() {

double mass = 244817;
for (int i = 1; i < time; i++)

if (i % (half_life / 2) == 1)
approx_decay(&mass);

printf("After %d, %lf remains.\n", time, mass);
return 0;

}

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 16 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Pointers to Pointers (to Pointers …) (𝜌)

Because pointers can point to anything, you also have pointers to pointers.

int main() {
int i = 81; int *pt = &i; int **pt_ptr = &pt;

int *r= *pt_ptr; // intermediate dereference
int k = *r; // complete the dereference

int k1 = **pt_ptr; // direct double dereference

int ***pt_ptr_ptr = &pt_ptr; // triple pointer
int k2 = ***pt_ptr_ptr;
return 0;

}

Source: PCRS (University of Toronto)

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 17 / 52

https://c-programming.onlinelearning.utoronto.ca/webdocs/2_pointers_memory/b_pointers/RESOURCES/pointers_intro_int.c
https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Pointers & Arrays (𝜌)

The relationship between pointers and arrays in C is a close one. Understanding this
relationship is critical for mastering C.

C allows to perform addition and subtraction on pointers to array elements. This
leads to an alternative way of processing arrays in which pointers take the place
of array subscripts.

Pointers can point to array elements. Here’s an example:

int a[10], *p;
p = &a[0];
*p = 5; // stores 4 in a[0]

A pointer is not an array but it can contain the address of an array. An array is
not a pointer either but the compiler interprets the name of an array as the
address of its 0th element.

int *x = &a[0];
int *y = a;

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 18 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Arrays as Arguments/Parameters (𝜌)

When passed to a function, an array name is treated as a pointer. That is, what is
passed to the function decays to a pointer to the first element.

int find_largest(int a[], int n){
int i, max = a[0];
for (i = 1; i < n; i++)

if (a[i] > max) max = a[i];
return max;

}
int main() {

...
find_largest(A, N); // A is not copied;
... // rather, a points to A[0]
return 0;

}

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 19 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Arrays as Arguments/Parameters (𝜌)

The size of an array is not inherently stored in the array itself; the only way to
know/pass on how large the array is is to pass the length of the array alongside.

Remember argv? It’s an array of “strings” of length argc.

int main(int argc, char **argv) { return 0; }

Strings
“Strings” are actually char-arrays, i.e. char *. They are null-terminated: their last
values are the \0 to indicate the end of the string; more about this when we discuss
strings…

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 20 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Functions: Arrays as Arguments/Parameters (𝜌)

1 An array used as an argument isn’t protected against change.

2 Just like with all structures, latency and bandwidth of passing an array are not
affected by the size of the array.

3 An array parameter can be declared as a pointer if desired.

Although declaring a parameter to be an array is the same as declaring it to be a
pointer, the same isn’t true for a variable.

int A[10]; // allocates memory for 10 integers
int *a; // allocates memory for a pointer, not array

4 A function with an array parameter can be passed an array “slice”:

find_largest(&b[5], 10);

Functions: Arnold’s Examples
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/functions/functions.c

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 21 / 52

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/functions/functions.c
https://utm.calendar.utoronto.ca/course/csc209h5

Section 3

Strings: Just Spicy Arrays

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 22 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Strings: Just Spicy Arrays

“Strings” in C are actually a special case of char arrays: they’re null-terminated,
meaning the last actual character is \0.

char limited[9]; // such a string shouldn't exceed 8

When working with strings, \0 isn’t typically used/printed.

Instead, it indicates where the string ends.

If you’re writing a function that doesn’t know the exact length of the string, the
\0 might come in handy.

Inserting a \0 in the middle of a char * shortens the effective string.

char *city = "mississauga";
city[4] = '\0'; // city is now "miss"

Declaring strings with explicit length initializes remainder as \0.

Important for many string-wise functions.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 23 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Strings: Delicate Arrays

String manipulation in practice (if not carefully done) often results in
unexpected/inconsistent behaviour or memory/pointer errors.

int main() {
char utm_local[] = "erindale"

utm_city[] = "mississauga",
utsg_local[] = "st. george",
utsg_city[] = "toronto";

utm_city[4] = '\0'; // utm_city is now "miss"

utm_local[8] = 'i'; // what happens to utm_local?
utsg_local[10] = 'k'; // what about now?

}

Full code
github.com/rhubarbwu/csc209/blob/master/lectures/lec04/campuses.c

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 24 / 52

https://github.com/rhubarbwu/csc209/blob/master/lectures/lec04/campuses.c
https://utm.calendar.utoronto.ca/course/csc209h5

Strings: Delicate Arrays

Depending on stack memory layout and changes, removing \0 might lead to
something “harmless” like inconsistent reading overruns.

#include "strings.h" // using strlen
int main() {

char F[6] = "{'a', 'p', 'p', 'l', 'e'}", // F[5] = \0
P[6] = "nachos", // no space for \0
M[6] = "popcorn"; // n is truncated, no \0

printf("%d %d %d\n", len(F), len(P), len(M));

char B[9] = "sourdough"; // try len = 5 or 13
printf("%d %d %d\n", len(F), len(P), len(M));
return 0;

}

Full code
github.com/rhubarbwu/csc209/blob/master/lectures/lec04/foods.c

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 25 / 52

https://github.com/rhubarbwu/csc209/blob/master/lectures/lec04/foods.c
https://utm.calendar.utoronto.ca/course/csc209h5

Section 4

Compilation

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 26 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: C Programs

C programs can consist of multiple *.c files
Each individual *.c file can be compiled to an object file.
Object files (*.o) contain “placeholders” for addresses of functions that were
declared but not defined.

Header (*.h) files ensure consistency between function declarations across your
program’s multiple source files.

The linker connects object files together to create an executable file.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 27 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: GCC Pipeline (𝜌)

Recall that all input files (the last arguments) flow through the pipeline (depending
on options) up to (and including)…

1 Preprocessing (gcc -E) strips comments and expands directives.

2 Compilation (gcc -S) generates assembly code (*.s/*.asm).

3 Assembly (gcc -c) generates binary/machine code objects (*.o).

4 Linking (gcc) consolidates objects into a single application.

defaults to a.out, but you can use -o <output> to specify.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 28 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: Preprocessing

Preprocessing…

removes comments.
expands compiler directives

#includes statements (akin to imports).
#define macros.

You can emit preprocessed code with gcc -E.

$ gcc -E foods.c
$ gcc -dM -E foods.c # includes pre-defined macros

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 29 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: Separate Compilation

Seems like a lot of steps, right? It’s like building a large project bottom-up with the
ability to mix/match components when necessary/desired. An analogy could be
assembling automobiles.

Automobile Manufacturing Compiling with GCC

Extract raw materials Preprocess compiler directives
Produce basic parts Compile to assembly
Assemble larger parts like the engine Assemble to binary objects
Assemble together, connect pipes/wires, Link to an application
screw/plug everything else, etc.

At any point, different parts can be chosen/substituted. The interface just has to be
valid (recall CSC207) as per the header files (*.h).

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 30 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: Separate Compilation

Suppose you want the following English code… (en.c)

#include <stdio.h>
#define fmt "Hi, %s. My name is %s too!\n"
char *name = "Peter", *my_name = "Erika";
int salutation() {

printf(fmt, name, my_name);
return 5;

}
int main() {

printf("%s: %d\n", name, salutation());
return 0;

}

Notice the #include imports and macro fmt.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 31 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: Separate Compilation

But you want to make a French version too… (fr.c)

#include <stdio.h>
#include <string.h>
char* name = "Pierre";
int salutation() {

printf("Bonjour, %s.\n", name);
return strlen(name);

}
int main() {

printf("%s: %d\n", name, salutation());
return 0;

}

You could write separate programs, but what if they’re largely similar? Can we
flexibly reuse consistent code?

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 32 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: Separate Compilation

Yes! Tie them together with a common header file (such as lang.h).

#include <stdio.h>
#include <string.h>
extern char* name; // global declaration
void salutation();

And use it as an interface by #include directive.

#include "lang.h"
int main() { // perform a greeting

salutation();
printf("%s: %d\n", name, strlen(name));
return 0;

}

Notice salutation() now returns void instead of int. Why? How?

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 33 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: Separate Compilation

Here’s what French (fr.c) might look like.

#include "lang.h"
char* name = "Pierre";
void salutation() {

printf("Bonjour, %s.\n", name);
}

And English (en.c) …

#include "lang.h"
#define fmt "Hi, %s. My name is %s too!\n"
char *name = "Peter", *my_name = "Erika";
void salutation() {

printf(fmt, name, my_name);
}

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 34 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Compilation: Separate Compilation

Finally, compile for the language you want. Here the objects are compiled separately
for clarity and reuse; you can link complete binaries without recompiling the
components each time.

gcc -S en.c # compile en.s
gcc -c en.s # assemble en.o
gcc -o en en.o greet.c # link English binary
./en # run English binary

gcc -c en.c fr.c # create en.o and fr.o
gcc -o fr fr.o greet.c # link French binary
./fr # run French binary

Compilation: Arnold’s Examples
mcs.utm.utoronto.ca/~209/23s/lectures/src/c/logistics.zip

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 35 / 52

https://mcs.utm.utoronto.ca/~209/23s/lectures/src/c/logistics.zip
https://utm.calendar.utoronto.ca/course/csc209h5

Section 5

Build Automation (Makefiles)

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 36 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Automation with Scripts

Now, suppose we are writing a language translation program that uses an
intermediate representation (IR) of type int * of length 2048.

Input from the source language is encoded to the IR.

Output to the target language is decoded from the IR.

Don’t worry about the implementation of encode() and decode().

Suppose for every language xx, we have xx-e.c…

int *encode(char *input);

And xx-d.c…

char *decode(int *ir);

And that main() could call either of these at will.

How would you design and build this?

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 37 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Automation with Scripts

One solution is to put encode() and decode() in a common header(s) and compile
each language pair manually.

gcc -o ar-bn ar-e.c bn-d.c main.c
gcc -o ar-de ar-e.c de-d.c main.c
gcc -o ar-en ar-e.c en-d.c main.c
gcc -o ar-es ar-e.c es-d.c main.c
gcc -o ar-fr ar-e.c fr-d.c main.c
gcc -o ar-hi ar-e.c hi-d.c main.c
gcc -o ar-jp ar-e.c jp-d.c main.c
gcc -o ar-pt ar-e.c pt-d.c main.c
gcc -o ar-ru ar-e.c ru-d.c main.c
gcc -o ar-zh ar-e.c zh-d.c main.c
...

We might want to write a script/function to generalize…

$ gcc -o $1-$2 $1-e.c $2-d.c.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 38 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Automation with Scripts

You could even batch it…

#!/bin/sh
langs="ar bn de en es fr hi jp pt ru zh"
for l1 in $langs; do

for l2 in $langs; do
gcc -o $1-$2 $l1-e.c $l2-e.c

done
done

This is much better, right? More elegant and programmable for sure.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 39 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Automation with Scripts

You could even batch it…

#!/bin/sh
langs="ar bn de en es fr hi jp pt ru zh"
for l1 in $langs; do

for l2 in $langs; do
gcc -o $1-$2 $l1-e.c $l2-e.c

done
done

Is this efficient? Definitely not! Every time you need some encoder xx-e or decoder
yy-d, you’re recompiling the same object but not reusing it.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 40 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefiles: Introduction

Makefiles facilitate building (i.e., compiling, linking, sometimes testing and
packaging) projects consisting of multiple source files.
If only one source file has changed, no need to recompile everything; instead:

1 Recompile source files that have changed.
2 Relink updated object files to generate new executable file.

Makefiles: Format
A Makefile contains a sequence of rules, each in the format:
target: prereq_1 prereq_2 ... prereq_n

action_1
...
action_n

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 41 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefiles: Usage

Makefiles are processed by the make program

Run make with no arguments to evaluate first rule.
Run make TARGET to execute action(s) defined in rule for TARGET.

Only if TARGET prerequisites were modified since last time that make TARGET was
run.

To force make TARGET to recompile code, you can:
Update last modified time of prerequisite source files, with touch; or
Delete prerequisite object files.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 42 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefile Syntax: Defining Variables

You may define variables; e.g., to store compiler flags:

CFLAGS= -g -Wall -Werror -fsanitize=address

reverse : reverse.c
gcc $(CFLAGS) -o reverse reverse.c

You can even declare an alternative compiler.

CXX=clang++

forward : forward.c
gcc $(CFLAGS) -o forward forward.c

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 43 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefile Syntax: Automatic (Built-In) Variables

Variable Meaning

$@ Target
$< First prerequisite
$? All out of date prerequisites
$^ All prerequisites

CFLAGS= -g -Wall -Werror -fsanitize=address

hello: hello.c hello.h
gcc $(CFLAGS) -o $@ $<

Ref.: 10.5.3: Automatic Variables, GNU Make manual

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 44 / 52

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html
https://utm.calendar.utoronto.ca/course/csc209h5

Makefile Example: Past Assignment

FLAGS= -Wall -Werror -fsanitize=address -g
OBJ = simfs.o initfs.o printfs.o simfs_ops.o
DEPENDENCIES = simfs.h simfstypes.h

all : simfs

simfs : ${OBJ}
gcc ${FLAGS} -o $@ $^

%.o : %.c ${DEPENDENCIES}
gcc ${FLAGS} -c $<

clean :
rm -f *.o simfs

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 45 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefile Example: Pattern Rules

%.o : %.c ${DEPENDENCIES}
gcc ${FLAGS} -c $<

Most files are compiled in the same way, so we write a pattern rule for the
general case
% expands to the stem of the file name (i.e., without extension)
gcc -c compiles the source file(s), but does not link

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 46 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefile Example: Phony Targets

You may want a command that builds a target:

OBJ = simfs.o initfs.o printfs.o simfs_ops.o

simfs: ${OBJ}
gcc ${FLAGS} -o $@ $^

Or a target that doesn’t build anything:

clean:
rm -f *.o simfs

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 47 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Section 6

Makefiles: Practice

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 48 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefiles: Practice

Provided by Karen Reid from my CSC209H1 in Fall 2019, supposedly an assignment
from an even older offering of CSC209.

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 49 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefiles: Practice (1)

test_print: test_print.o ptree.o
gcc -Wall -g -std=gnu99 -o test_print test_print.o ptree.o

1 What’s the target?
2 What’re the prerequisites? What’s another term for them?
3 How many actions does this rule have?
4 What does a file that ends in .o contain? How is it generated?

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 50 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefiles: Practice (2)

FLAGS = -Wall -g -std=gnu99
DEPENDENCIES = ptree.h
all: test_print print_ptree
test_print: test_print.o ptree.o

gcc ${FLAGS} -o $@ $^
print_ptree: print_ptree.o ptree.o

gcc ${FLAGS} -o $@ $^
%.o: %.c ${DEPENDENCIES}

gcc ${FLAGS} -c $<
clean:

rm -f *.o test_print print_ptree

1 If we were to run make print_ptree which rule is evaluated first?
2 What new files would be created?
3 What is the last action that is executed in the make command above?

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 51 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

Makefiles: Practice (3)

FLAGS = -Wall -g -std=gnu99
DEPENDENCIES = ptree.h
all: test_print print_ptree
test_print: test_print.o ptree.o

gcc ${FLAGS} -o $@ $^
print_ptree: print_ptree.o ptree.o

gcc ${FLAGS} -o $@ $^
%.o: %.c ${DEPENDENCIES}

gcc ${FLAGS} -c $<
clean:

rm -f *.o test_print print_ptree

4 Which files will the pattern rule (%.o : %.c) match on?
5 If we the modify ptree.c and run make print_ptree again, which rules are

evaluated? Which actions are executed?

Memory & Compilation CSC209: Software Tools & Sys Prog. January 30, 2023 52 / 52

https://utm.calendar.utoronto.ca/course/csc209h5

	Memory & Arrays (review)
	Functions (review)
	Strings: Just Spicy Arrays
	Compilation
	Build Automation (Makefiles)
	Makefiles: Practice

