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Mixture Models

* We will look at the mixture models, including Gaussian mixture models
and mixture of Bernoulli.

e The key idea is to introduce latent variables, which allows complicated
distributions to be formed from simpler distributions.

» We will see that mixture models can be interpreted in terms of having
discrete latent variables (in a directed graphical model).

e Later in class, we will also look at the continuous latent variables.



K-Means Clustering

o Let us first look at the following problem: Identify clusters, or groups, of
data points in a multidimensional space.

« We observe the dataset {x1,...,xx} consisting of N D-dimensional
observations

* We would like to partition the data into K clusters, where K is given.

* We next introduce D-dimensional vectors, prototypes, p.,k=1,..., K.
* We can think of v, as representing cluster centers.

e Our goal: 21 @
- Find an assignment of data points to clusters. -
- Sum of squared distances of each data ) PO Ty
point to its closest prototype is at the L x
minimum. b A




K-Means Clustering

 For each data point x,, we introduce a binary vector r,, of length K (1-of-K
encoding), which indicates which of the K clusters the data point x, is
assigned to.

» Define objective (distortion measure):

N K
J = ernk"xn — NkHQ-

n=1 k=1
* |t represents the sum of squares of the distances of each data point to its
assigned prototype ;.

2f (@
e Our goal it find the values of r,, and the X

cluster centers p, so as to minimize the
objective J.




Iterative Algorithm

 Define iterative procedure to minimize:

N K
J = ZZTWHXWJ — Nk||2-

n=1 k=1 _
Hard assignments of

* Given y,, minimize J with respect to r,, (E-step): ~ points to clusters.

—

. 1 if k = argming |[x, — p,||?
"k 0 otherwise

which simply says assign n" data point x,, to its closest cluster center.

« Given r_,, minimize J with respect to n, (M-step):

Zn I'nkXn
Zn Tnk

M = Number of points

assigned to cluster k.
Set u, equal to the mean of all the data points assigned to cluster k.

e Guaranteed convergence to local minimum (not global minimum).



Example

e Example of using K-means (K=2) on Old Faithful dataset.
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Convergence

 Plot of the cost function after each E-step (blue points) and M-step (red
points)

Q | | "]  The algorithm has converged
‘ after 3 iterations.
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» K-means can be generalized by introducing a more general similarity

measure. N K
J = Z ZrnkK(xn,p,k).
n=1 k=1



Image Segmentation

e Another application of K-means algorithm.

e Partition an image into regions corresponding, for example, to object parts.
e Each pixel in an image is a point in 3-D space, corresponding to R,G,B
channels.

Original image

e For a given value of K, the algorithm represent an image using K colors.

» Another application is image compression.



Image Compression

* For each data point, we store only the identity k of the assigned cluster.
 \WWe also store the values of the cluster centers p,.

e Provided K <« N, we require significantly less data.

‘Original image } K=10
| ' ' | ' « The original image
has 240 x 180 =
43,200 pixels.

e Each pixel contains
{R,G,B} values, each of
which requires 8 bits.

* Requires 43,200 x 24 = 1,036,800 bits to transmit directly.
« With K-means, we need to transmit K code-book vectors p, -- 24K bits.

 For each pixel we need to transmit log,K bits (as there are K vectors).
o Compressed image requires 43,248 (K=2), 86,472 (K=3), and 173,040 (K=10)
bits, which amounts to compression rations of 4.2%, 8.3%, and 16.7%.



Mixture of Gaussians

* We will look at mixture of Gaussians in terms of discrete latent variables.

» The Gaussian mixture can be written as a linear superposition of
Gaussians:

p(x) = 3 mN (x|, Brc).

* Introduce K-dimensional binary random P
variable z having a 1-of-K representation: gt
a € {01}, ) =1 A T

* We will specify the distribution over z in terms
of mixing coefficients:

plar=1)=m, 0<m <1, Y m=1.
k



Mixture of Gaussians

e Because z uses 1-of-K encoding, we have:

K
— 2k
=[] =
k=1

* We can now specify the conditional distribution'
p(x|zx = 1) = N(x|py, By), or p(x|z) H N (x|py, B )%
k=1

* We have therefore specified the joint distribution:
p(x,2) = p(x[z)p(2).
e The marginal distribution over x is given by:

K
Zp )p(x|z) = Zﬂk/\f(x]pk,gk).

k=1
e The marginal dlstrlbutlon over X is given by a Gaussian mixture.



Mixture of Gaussians

e The marginal distribution: o
p(x) =) plz)p(x|z) = > mN (x|py, ).
v/ k=1
e If we have several observations x,,...,Xy, it follows that

for every observed data point x,,, there is a corresponding
latent variable z,..

 Let us look at the conditional p(z|x), responsibilities, which
we will need for doing inference:
p(zx = 1)p(x|z = 1)

v(zk) = plar = 1[x) = =
"\ ) j=1D(z = )p(x|z; = 1)

responsibility that N (x|, i)

component k takes for R K ' N

explaining the data x Zj:l WJN(X‘“’J" )

» We will view , as prior probability that z,=1, and ~(z,) is the
corresponding posterior once we have observed the data.



Example

* 500 points drawn from a mixture of 3 Gaussians.

0.5}

O L
0 0.5 1 0 0.5 1 0 0.5 1
Samples from the joint ~ Samples from the Same samples where
distribution p(x,z). marginal distribution p(x). colors represent the

value of responsibilities.



Maximum Likelihood

» Suppose we observe a dataset {Xx,,...,X\}, and we model the data using
mixture of Gaussians.

* We represent the dataset as an N by D matrix X.

e The corresponding latent variables will be represented and an N by K
matrix Z.

rzn B
e The log-likelihood takes form: T e
N K
lnp(X‘ﬂ-vu’a 2) — S:lnxﬂ-kj\/‘(x““l’kvzk) ”
n=1 k=1 w
! : -
Model parameters - Iy

Graphical model for a Gaussian mixture
model for a set of i.i.d. data point {x.}, and
corresponding latent variables {z,}.



Maximum Likelihood
* The log-likelihood:

Inp(X|m, p, 3

Y lnYmN (x|py, Xk).
n=1

e Differentiating with respect to 1, and setting to zero:

TN (X g, Bk) -1
S (Xn — ). we
ZZ 7-‘-] Xn|llfj72] K k
J
Y
Y(znk) Soft assignment

/ K
k — Nik Z’V(znk)xm Ni, = Z’Y(an)

\.

N

v

« \We can interpret N, as effective number of points assigned to cluster k.

e The mean y, is given by the mean of all the data points weighted by the
posterior 4(z,,) that component k was responsible for generating x..



Maximum Likelihood

* The log-likelihood:

N
lnp(X\ﬂ',u, Z Zﬂ_k/\/‘ X‘“’Imzk)

k=1
e Differentiating with respect to 3, and setting to zero:

rzn
1
S = 5 2 10k (o — ) (n — p) e
n=1
e Note that the data points are weighted by the X,
posterior probabilities. "
e Maximizing log-likelihood with respect to mixing X
proportions: Ny
Tl — W

» Mixing proportion for the ki component is given by the average

responsibility which that component takes for explaining the data.



Maximum Likelihood

* The log-likelihood:

N K
lnp(X‘ﬂ-v 122 2) — Z IHZ WkN(X‘u’ka 2’6)
k=1

n=1

* Note that the maximum likelihood does not have a closed form solution.

e Parameter updates depend on responsibilities (Z,, i
v(z.¢), which themselves depend on those T e
parameters:
7TkN X . Zk
V(an> :p(znk _ 1‘X> _ - ( nlou’k ) . X,
23:1 WjN(Xn“l'jvzj) w
« Iterative Solution: . N,

E-step: Update responsibilities v(z,,, ).
M-step: Update model parameters =, u,, 2., for k=1,...,K.



EM algorithm

* Initialize the means p,, covariances X/, and mixing proportions .
e E-step: Evaluate responsibilities using current parameter values:

WkNXn ,Ek
Yak) = lns = 1) = e nlb 20)
D ey TN (%n |1, 355)

* M-step: Re-estimate model parameters using the current responsibilities:

new _ "Y an Xy, Nk = ’7 anz
z 201

N
new 1

2 = F Z Y (Ynk) (X — py) (Xn — Mk)Ta
new Nk

e Evaluate the log-likelihood and check for convergence.



compared to K-means)

2 L

Mixture of Gaussians: Example

e lllustration of the EM algorithm (much slower convergence
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An Alternative View of EM

e The goal of EM is to find maximum likelihood solutions for models with
latent variables.

* We represent the observed dataset as an N by D matrix X.
e Latent variables will be represented and an N by K matrix Z.
e The set of all model parameters is denoted by 6.

* The log-likelihood takes form:

an =y
Inp(X|0) = In [Zp(x,zw)]. ™ e—
Z
e Note: even if the joint distribution belongs to Xy
exponential family, the marginal typically does not! # — 3
- We will call: M

{X,Z} as complete dataset.
{X} asincomplete dataset.



An Alternative View of EM

e In practice, we are not given a complete dataset {X,Z}, but only
incomplete dataset {X]}.

» Our knowledge about the latent variables is given only by the posterior
distribution p(Z|X,6).

e Because we cannot use the complete data log-likelihood, we can

consider expected complete-data Iog-Ilkellhood:A/ May seem ad-hoc.

Q(,60°%) =Y " p(Z|X,6°") Inp(X, Z[6).
Z

* In the E-step, we use the current parameters 6°¢ to compute the
posterior over the latent variables p(Z|X,6°4).

* We use this posterior to compute expected complete log-likelinood.
 In the M-step, we find the revised parameter estimate 6"¢v by
maximizing the expected complete log-likelihood:

<« lractable
g = arg max Q(0, o).



The General EM algorithm

» Given a joint distribution p(Z,X|#) over observed and latent variables
governed by parameters 6, the goal is to maximize the likelihood function
p(X|6) with respect to 6.

e Initialize parameters 6%,
» E-step: Compute posterior over latent variables: p(Z|X,6°14).
e M-step: Find the new estimate of parameters gmcv:

A" = arg max Q(6, 6°'4).
where 9

Q(0,6°%) = > " p(Z|X,6°) Inp(X, Z[6).
Z

e Check for convergence of either log-likelihood or the parameter values.

Otherwise: 1 _
" «— ¢, and iterate.

* We will next show that each step of EM algorithm maximizes the log-
likelihood function.



Variational Bound

» Given a joint distribution p(Z,X|#) over observed and latent variables
governed by parameters 6, the goal is to maximize the likelihood function
p(X|#) with respect to 6.

p(X|6) Zp (X, Z|6).

* We will assume that Z is discrete, although derivations are identical if Z
contains continuous, or a combination of discrete and continuous
variables.

e For any distribution q(Z) over latent variables we can derive the
following variational lower bound:

In p(X16) zanp(X,ZW anq

Jensen’s
inequality > Z q(Z

X zw>

X zw)
(Z)

= L(q,09).



Variational Bound

e Variational lower-bound:

X z o
In p(X|6) zlnzp(x,zw anq ‘ )

>Zq XZ)W)

1
—Zq ) In p(X, Z|0) +Zq ln@

=Eyz) | Inp(X, Z|0)] + H(a(Z)) = L(g0).

/ / \

Expected complete  Entropy functional. Variational lower-
log-likelinood bound




probabilities

Entropy

 For a discrete random variable X, where P(X=x;) = p(x;), the entropy of a

random variable is:
H(p) = — ZP(W) log p(z;).

e Distributions that are sharply picked around a few values will have a
relatively low entropy, whereas those that are spread more evenly across
many values will have higher entropy

0.5 05

» Histograms of two probability
distributions over 30 bins.

H=177 H =3.09

025} 025t

» The largest entropy will arise
from a uniform distribution

‘r[ L _ H = -In(1/30) = 3.40.

0

probabilities

e For a density defined over continuous random variable, the differential
entropy is given by: H(p) = — /p(:v) log p(x)dz.



Variational Bound

* We saw:
Inp(X[0) > Eyz) | Inp(X, Z|6)] +H(q(Z)) = L(g,9).

* We also note that the following decomposition holds:

Inp(X|0) = L(q,0) + KL(q||p),

where - Variational lower-
X Zw) bound
E:q IR
Kullback-Leibler
«— (KL) divergence.

p(Z|X, 6
L(q|lp) = Z q(Z ‘ ) : Also known as
) Relative Entropy.

e KL divergence is not symmetrlc.
* KL(q||p) > 0 with equality iff p(x) = q(x).
e Intuitively, it measures the “distance” between the two distributions.



Variational Bound

e Let us derive that:
log p(X|0) = L(q,8) + KL(q||p),

 We can write:
Inp(X,Z|0) = Inp(Z[X, 0) + In p(X]0),

and plugging into the definition of L(q, 8), gives the desired result.

* Note that variational bound becomes tight iff q(Z) = p(Z | X,09).

* In other words the distribution q(Z) is equal to the true posterior
distribution over the latent variables, so that KL(q||p) = O.

* As KL(q||p) > 0, it immediately follows that:
Inp(X|0) > L(q,0),

which also showed using Jensen’s inequality.



Decomposition

e lllustration of the decomposition which holds for any distribution q(Z).

Inp(X|0) = L(q,0) + KL(q||p),

L(q,0) In p(X|[0)




Alternative View of EM

* We can use our decomposition to define the EM algorithm and show
that it maximizes the log-likelihood function.

Inp(X|0) = L(q,0) + KL(q||p),
e SumMmary:

- In the E-step, the lower bound L(q, 8) is maximized with respect
to distribution g while holding parameters 6 fixed.

- In the M-step, the lower bound L(q, 8) is maximized with respect
to parameters 6 while holding the distribution q fixed.

* These steps will increase the corresponding log-likelihood.



E-step

» Suppose that the current value of the parameter vector is 6°.

 In the E-step, we maximize the lower bound with respect to q while
holding parameters 6/ fixed.

L(g,6°") = Inp(X|6'*) — KL(¢g]|p)-

N\

KL(q[|p) = 0 ¥ — " does not
depend on q

 The lower-bound is maximized
when KL term turns to zero.

£(g,67) lnp(X|6”%) e In other words, when q(Z) is
! + equal to the true posterior:

1(Z) = p(Z|X,6°').

e The lower bound will become equal to the log-likelihood.



M-step

 In the M-step, the lower bound is maximized with respect to parameters

6 while holding the distribution q fixed. does not
depend on 6.
1
L(q,0) => p(Z|X,0") Inp(X, Z|0) + > p(Z|X,6°%) In T
Z > p(Z[|X, 6°1¢)
KL(QHP)I ; [ L(q,0) = Q(6,6°?) + const.

e Hence the M-step amounts to
maximizing the expected
complete log-likelihood.

L(g, 8™") In p(X|0"") enew — arg max Q(9 eold)
0 ’ '

e Because KL divergence is non-negative, this causes the log-likelihood log
p(X | 8) to increase by at least as much as the lower bound does.



Bound Optimization

e The EM algorithm belongs to the general class of bound optimization
methods:

—
e At each step, we compute:

- E-step: a lower bound on the log-likelihood function for the current
parameter values. The bound is concave with unique global optimum.

- M-step: maximize the lower-bound to obtain the new parameter
values.



Extensions

e For some complex problems, it maybe the case that either E-step or
M-step, or both remain intractable.

e This leads to two possible extensions.

e The Generalized EM deals with intractability of the M-step.

* Instead of maximizing the lower-bound in the M-step, we instead seek
to change parameters so as to increase its value (e.g. using nonlinear
optimization, conjugate gradient, etc.).

 We can also generalize the E-step by performing a partial, rather than
complete, optimization of the lower-bound with respect to q.

e For example, we can use an incremental form of EM, in which at each
EM step only one data point is processed at a time.

e In the E-step, instead of recomputing the responsibilities for all the data
points, we just re-evaluate the responsibilities for one data point, and
proceed with the M-step.



Maximizing the Posterior

* We can also use EM to maximize the posterior p(6 | X) for models in
which we have introduced the prior p(6).

* To see this, note that:
Inp(0|X) =Inp(X|0) + Inp(A) — In p(X).
e Decomposing the log-likelihood into lower-bound and KL terms, we
have: In p(X|[8) = L(g,8) + KL(q||p),
e Hence
In p(6[X) = L(q, 0) + KL(¢|[p) + Inp(#) — In p(X).
where Inp(X) is a constant.

e Optimizing with respect to g gives rise to the same E-step as for the
standard EM algorithm.

* The M-step equations are modified through introduction of the prior
term, which typically amounts to only a small modification to the standard
ML M-step equations.



Gaussian Mixtures Revisited

* We now consider the application of the latent variable view of EM the
case of Gaussian mixture model.

e Recall: N K
1np(X‘7‘l’, 122 E) — S: In S: WkN(X“l’ka 2k>
k=1

n=1

4 o
Zin Zn

{X} --incomplete dataset. {X,Z} -- complete dataset.



Maximizing Complete Data

» Consider the problem of maximizing the likelihood for the complete

data: N K .
p(X7Z|ﬂ-7“’7 2) — H H [ﬂ-k/\/‘(x‘u’kazkﬂ :
n=1 k=1
K
Inp(X, Z|m, p,3) = S: [S: Znk N7 4 Zpke IN N (x|, Zk)]
k=1 nz\l y

Y [ —
Sum of K independent

contributions, one for each
mixture component.

e Maximizing with respect to mixing proportions g I
. N N
yields: 1 S P

. : -- complete dataset.
e And similarly for the means and covariances. P



Posterior Over Latent Variables

* Remember;

p(x|z) = HN X[y, 2 )", H?T

k=1
e The posterior over latent variables takes form:

N K
p(ZX. 73 o« [] T1 [wwxmk,zw]
n=1 k=1

2k

* Note that the posterior factorizes over n points,
so that under the posterior distribution {z} are
independent.

 This can be verified by inspection of directed
graph and making use of the d-separation
property.

T o




Expected Complete Log-Likelihood

« The expected value of indicator variable z,, under the posterior

distribution is: o
Zzn Znk Hj [ﬂ-jN(Xn‘/J’j? Ej)} "

Elznk| = o
SR VRN MEY P

WkNXnu,,Ek
NGl D)
21 TN (Xn |y, 335)

e This represent the responsibility of component k for data point x..

 The complete-data log-likelihood:
N K

Inp(X,Z|m, 1, X2) = Z Zznk llnﬂk + In N (X0 | o, Ek)]
n=1 k=1
e The expected complete data Iog Iikelihood iS:

Ez|lnp(X, Zlmw, p, X)| = ZZ Znk [lnwk+ln/\/(xn\uk,2k)].



Expected Complete Log-Likelihood

 The expected complete data Iog-likelihood iS:
Ez|lnp(X,Z|7, p,X)| = ZZ Znk llnﬂk + In NV (X | g, 2ke) | -

 Maximizing the respect to model parameters we obtain:

new:—g fyznk X, Nk—E vznk P N

N
N = Z Y (Ynk) (Xn — ) (% — p3.) "

1
Np,

Ny

N

ﬂ_ZGw —




Relationship to K-Means

e Consider a Gaussian mixture model in which covariances are shared

and are given by el.

1 1
pcliug, D) = e | — o lx—

e Consider EM algorithm for a mixture of K Gaussians, in which we treat ¢
as a fixed constant. The posterior responsibilities take form:

) = —k exp(—||xn — py||*/2€)
n _ K .
2 j—1 75 exXP(—|[xn — p15][2/2¢€)

» Consider the limit e — 0. ,
« In the denominator, the term for which |[X» — p;||” is smallest will go

to zero most slowly. Hence ~(z.,) — r.. where

. 1 if k = argming |[x, — p,|[?
"k 0 otherwise



Relationship to K-Means

e Consider EM algorithm for a mixture of K Gaussians, in which we treat
¢ as a fixed constant. The posterior responsibilities take form:
mk exp(—|[xn — pi]|*/2¢)

D j=1 5 exp(—|[xn — py[|?/2¢€)

e Finally, in the limit ¢ — 0, the expected complete log-likelihood
becomes:

N K
1 2
Ez|lnp(X,Z|7, p,X)| — 5 ?;];rnkan — [, ||° + const.

e Hence in the limit, maximizing the expected complete log-likelihood is
equivalent to minimizing the distortion measure J for the K-means
algorithm.



Bernoulli Distribution

e So far we focused on distributions over continuous variables.

* We will now look at mixture of discrete binary variables described by
Bernoulli distributions.

» Consider a set of binary random variables x;, i=1,...,D, each of which is
governed by a Bernoulli distribution with ..

p(x|p) = Hu (1 — p)' 7

* The mean and covariance of this distribution are:

Elx| =p, covlx|=diag(ui(1 — ).



Mixture of Bernoulli Distributions

e Consider a finite mixture of Bernoulli distributions:

p(x|m, p) = Zmp x|y,),

p(x|py) = | [ w1 — pura) .
=1

» The mean and covariance of this mixture distribution are:

Z?Tklik, cov|x Zwk Ek + ukuk) Ex|E[x]’,
k=1
where Zk = diag(,u;m-(l — ,u;m))
e The covariance matrix is no longer diagonal, so the mixture distribution

can capture correlations between the variables, unlike a single Bernoulli
distribution.



Maximum Likelihood

e Given a dataset X = {x,,...,Xy}, the log-likelihood takes form:

In p(X|m, p) = Zln[Zwkp x| ]

e Again, we see the sum inside the log, so the maximum likelihood
solution no longer has a closed form solution.

* We will now derive EM for maximizing this likelihood function.

& =
& %5
Zn, Zn

{X} --incomplete dataset. {X,Z} -- complete dataset.



Complete Log-Likelihood

e By introducing latent discrete random variables, we have:
K
=11~ oz Hp x|y )
k=1

* \We can write down the complete Iog -likelihood

Inp(X,Z|mw, 1) = Z Zznk llnﬂk + Z Tpi I pg; + (1 — ;) In(1 — ,u;m}]

1=1 k=1

e The expected Complete -data log-likelihood:

Ezllnp(X,Zhr,p,} 227 (Znk {lnmﬁ—i—z Tpi I i+ (1—2ps) In(1— ,umﬂ,

1=1 k=1

where E|z,x] = v(2nk)-



E-step

e Similar to the mixture of Gaussians, in the E-step, we evaluate
responsibilities using Bayes’ rule:
Zzn Znk | 11 [Wk’p(xnmlc’ﬂ "

>z, L1 [ij(XnWj)] "

o TEP(Xn|1y)
o K
23:1 ij(xn|”j)

E[an] —

— V(an)




M-step
* The expected Complete-data log-likelihood:

Ezllnp(X,Zh,y} 227 (Znk {lnmﬁ—l—z i I pg;+(1—2p;) In(1— ,u;m} :

1=1 k=1

» Maximizing the expected complete-data log-likelihood:

1 Ny,
K — M nz::l/Y(an)Xnv T = W? Nki — nz::/}/(znk)?

where N, is the effective number of data points associated with
component k.

* Note that the mean of component k is equal to the weighted mean of the
data, with weights given by the responsibilities that component k takes for
explaining the data points.



Example

e |llustration of the Bernoulli mixture model

Training data

Learned p, for the first three A single multinomial
components. Bernoulli distribution fit to
the full data.



