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Mixture Models 
•  We will look at the mixture models, including Gaussian mixture models 
and mixture of Bernoulli.  

•  The key idea is to introduce latent variables, which allows complicated 
distributions to be formed from simpler distributions.   

•  We will see that mixture models can be interpreted in terms of having 
discrete latent variables (in a directed graphical model).  

•  Later in class, we will also look at the continuous latent variables.  



K-Means Clustering 
•  Let us first look at the following problem: Identify clusters, or groups, of 
data points in a multidimensional space.  

•  We would like to partition the data into K clusters, where K is given.  

•  We observe the dataset                      consisting of N D-dimensional 
observations  

•  We next introduce D-dimensional vectors, prototypes,  
•  We can think of µk as representing cluster centers.  

•  Our goal:  

-  Find an assignment of data points to clusters. 
-  Sum of squared distances of each data 
point to its closest prototype is at the 
minimum.  



K-Means Clustering 
•  For each data point xn we introduce a binary vector rn of length K (1-of-K 
encoding), which indicates which of the K clusters the data point xn is 
assigned to. 
•  Define objective (distortion measure): 

•  It represents the sum of squares of the distances of each data point to its 
assigned prototype µk.  

•  Our goal it find the values of  rnk and the 
cluster centers µk so as to minimize the 
objective J.  



Iterative Algorithm 
•  Define iterative procedure to minimize: 

•  Given µk, minimize J with respect to rnk (E-step):  

which simply says assign nth data point xn to its closest cluster center.  

•  Given rnk, minimize J with respect to µk (M-step):  

Set µk equal to the mean of all the data points assigned to cluster k.  

Number of points 
assigned to cluster k. 

•  Guaranteed convergence to local minimum (not global minimum).   

Hard assignments of 
points to clusters. 



Example 
•  Example of using K-means (K=2) on Old Faithful dataset. 



Convergence  
•  Plot of the cost function after each E-step (blue points) and M-step (red 
points) 

The algorithm has converged 
after 3 iterations.  

•  K-means can be generalized by introducing a more general similarity 
measure: 



Image Segmentation 
•  Another application of K-means algorithm.  
•  Partition an image into regions corresponding, for example, to object parts.  
•  Each pixel in an image is a point in 3-D space, corresponding to R,G,B 
channels. 

•  For a given value of K, the algorithm represent an image using K colors.  

•  Another application is image compression. 



Image Compression 
•  For each data point, we store only the identity k of the assigned cluster.  
•  We also store the values of the cluster centers µk.  
•  Provided K ¿ N, we require significantly less data.  

•  Requires 43,200 £ 24 = 1,036,800 bits to transmit directly.   

•  With K-means, we need to transmit K code-book vectors µk -- 24K bits.  

•  The original image 
has 240 £ 180 = 
43,200 pixels.  

•  Each pixel contains 
{R,G,B} values, each of 
which requires 8 bits.  

•  For each pixel we need to transmit log2K bits (as there are K vectors).  
•  Compressed image requires 43,248 (K=2), 86,472 (K=3), and 173,040 (K=10) 
bits, which amounts to compression rations of 4.2%, 8.3%, and 16.7%. 

Original image K=3 K=10 



Mixture of Gaussians 
•  We will look at mixture of Gaussians in terms of discrete latent variables.  

•  The Gaussian mixture can be written as a linear superposition of 
Gaussians: 

•  Introduce K-dimensional binary random 
variable z having a 1-of-K representation: 

•  We will specify the distribution over z in terms 
of mixing coefficients: 



Mixture of Gaussians 
•   Because z uses 1-of-K encoding, we have: 

•  We can now specify the conditional distribution: 

or 

•  We have therefore specified the joint distribution: 

•  The marginal distribution over x is given by: 

•  The marginal distribution over x is given by a Gaussian mixture. 



Mixture of Gaussians 
•  The marginal distribution:  

•  If we have several observations x1,…,xN, it follows that 
for every observed data point xn, there is a corresponding 
latent variable zn.    
•  Let us look at the conditional p(z|x), responsibilities, which 
we will need for doing inference:  

•  We will view ¼k as prior probability that zk=1, and °(zk) is the 
corresponding posterior once we have observed the data.  

responsibility that 
component k takes for 
explaining the data x 



Example 
•  500 points drawn from a mixture of 3 Gaussians.  

Samples from the joint 
distribution p(x,z). 

Samples from the 
marginal distribution p(x). 

Same samples where 
colors represent the 
value of responsibilities.   



Maximum Likelihood 
•  Suppose we observe a dataset {x1,…,xN}, and we model the data using 
mixture of Gaussians.  
•  We represent the dataset as an N by D matrix X.  

•  The corresponding latent variables will be represented and an N by K 
matrix Z. 

•  The log-likelihood takes form: 

Graphical model for a Gaussian mixture 
model for a set of i.i.d. data point {xn}, and 
corresponding latent variables {zn}.    

Model parameters 



Maximum Likelihood 
•  The log-likelihood: 

•  Differentiating with respect to µk and setting to zero: 

•  We can interpret Nk as effective number of points assigned to cluster k.   

•  The mean µk is given by the mean of all the data points weighted by the 
posterior °(znk) that component k was responsible for generating xn.    

Soft assignment 



Maximum Likelihood 
•  The log-likelihood: 

•  Differentiating with respect to §k and setting to zero: 

•  Maximizing log-likelihood with respect to mixing 
proportions: 

•  Note that the data points are weighted by the 
posterior probabilities.  

•  Mixing proportion for the kth component is given by the average 
responsibility which that component takes for explaining the data.   



Maximum Likelihood 
•  The log-likelihood: 

•  Note that the maximum likelihood does not have a closed form solution.  

•  Parameter updates depend on responsibilities 
°(znk), which themselves depend on those 
parameters:  

•  Iterative Solution:  

E-step: Update responsibilities °(znk).  
M-step: Update model parameters ¼k, µk, §k, for k=1,…,K.   



EM algorithm 
•  Initialize the means µk, covariances §k, and mixing proportions ¼k.  
•  E-step: Evaluate responsibilities using current parameter values:  

•  M-step: Re-estimate model parameters using the current responsibilities: 

•  Evaluate the log-likelihood and check for convergence.  



Mixture of Gaussians: Example 
•  Illustration of the EM algorithm (much slower convergence 
compared to K-means)  



An Alternative View of EM 
•  The goal of EM is to find maximum likelihood solutions for models with 
latent variables.   
•  We represent the observed dataset as an N by D matrix X.  
•  Latent variables will be represented and an N by K matrix Z. 
•  The set of all model parameters is denoted by µ.  

•  The log-likelihood takes form: 

•  Note: even if the joint distribution belongs to 
exponential family, the marginal typically does not!  

•  We will call: 
as complete dataset. 
as incomplete dataset. 



An Alternative View of EM 
•  In practice, we are not given a complete dataset {X,Z}, but only 
incomplete dataset {X}. 
•  Our knowledge about the latent variables is given only by the posterior 
distribution p(Z|X,µ).   
•  Because we cannot use the complete data log-likelihood, we can 
consider expected complete-data log-likelihood:  

•  In the E-step, we use the current parameters µold to compute the 
posterior over the latent variables p(Z|X,µold).   
•  We use this posterior to compute expected complete log-likelihood.  
•  In the M-step, we find the revised parameter estimate µnew by 
maximizing the expected complete log-likelihood:  

Tractable 

May seem ad-hoc. 



The General EM algorithm 
•  Given a joint distribution p(Z,X|µ) over observed and latent variables 
governed by parameters µ, the goal is to maximize the likelihood function 
p(X|µ) with respect to µ.  

•  E-step: Compute posterior over latent variables: p(Z|X,µold).   
•  Initialize parameters µold. 

•  M-step: Find the new estimate of parameters µnew:   

   where 

•  Check for convergence of either log-likelihood or the parameter values. 
Otherwise: 

   and iterate. 

•  We will next show that each step of EM algorithm maximizes the log-
likelihood function.  



Variational Bound  
•  Given a joint distribution p(Z,X|µ) over observed and latent variables 
governed by parameters µ, the goal is to maximize the likelihood function 
p(X|µ) with respect to µ: 

•  For any distribution q(Z) over latent variables we can derive the 
following variational lower bound:   

Jensen’s 
inequality 

•  We will assume that Z is discrete, although derivations are identical if Z 
contains continuous, or a combination of discrete and continuous 
variables.  



Variational Bound  
•  Variational lower-bound: 

Expected complete 
log-likelihood 

Entropy functional. Variational lower-
bound 



Entropy 
•  For a discrete random variable X, where P(X=xi) = p(xi), the entropy of a 
random variable is: 

•  Distributions that are sharply picked around a few values will have a 
relatively low entropy, whereas those that are spread more evenly across 
many values will have higher entropy  

•  The largest entropy will arise 
from a uniform distribution      
H = -ln(1/30) = 3.40.   

•  Histograms of two probability 
distributions over 30 bins.  

•  For a density defined over continuous random variable, the differential 
entropy is given by:  



Variational Bound 
•  We saw: 

•  We also note that the following decomposition holds: 

where Variational lower-
bound  

Kullback-Leibler 
(KL) divergence. 
Also known as 
Relative Entropy. 

•  KL divergence is not symmetric.  
•  KL(q||p) ¸ 0 with equality iff p(x) = q(x).   
•  Intuitively, it measures the “distance” between the two distributions.  



Variational Bound 
•  Let us derive that: 

and plugging into the definition of               gives the desired result.  

•  Note that variational bound becomes tight iff q(Z) = p(Z | X,µ).  

•  In other words the distribution q(Z) is equal to the true posterior 
distribution over the latent variables, so that KL(q||p) = 0.  

•  As KL(q||p) ¸ 0, it immediately follows that:  

which also showed using Jensen’s inequality.  

•  We can write: 



Decomposition 
•  Illustration of the decomposition which holds for any distribution q(Z).  



Alternative View of EM 
•  We can use our decomposition to define the EM algorithm and show 
that it maximizes the log-likelihood function. 

•  Summary: 

-  In the E-step, the lower bound              is maximized with respect 
to distribution q while holding parameters µ fixed.   
-  In the M-step, the lower bound              is maximized with respect 
to parameters µ while holding the distribution q fixed.   

•  These steps will increase the corresponding log-likelihood.  



E-step 
•  Suppose that the current value of the parameter vector is µold.  
•  In the E-step, we maximize the lower bound with respect to q while 
holding parameters µold fixed.  

does not 
depend on q 

•  The lower-bound is maximized 
when KL term turns to zero.  
•  In other words, when q(Z) is 
equal to the true posterior: 

•  The lower bound will become equal to the log-likelihood.  



M-step 
•  In the M-step, the lower bound is maximized with respect to parameters 
µ while holding the distribution q fixed. does not 

depend on µ.  

•  Because KL divergence is non-negative, this causes the log-likelihood log 
p(X | µ) to increase by at least as much as the lower bound does.  

•  Hence the M-step amounts to 
maximizing the expected 
complete log-likelihood.  



Bound Optimization 
•  The EM algorithm belongs to the general class of bound optimization 
methods: 

•  At each step, we compute: 
-  E-step: a lower bound on the log-likelihood function for the current 
parameter values. The bound is concave with unique global optimum.  
-  M-step: maximize the lower-bound to obtain the new parameter 
values.  



Extensions 
•  For some complex problems, it maybe the case that either E-step or   
M-step, or both remain intractable. 
•  This leads to two possible extensions. 

•  The Generalized EM deals with intractability of the M-step.  
•  Instead of maximizing the lower-bound in the M-step, we instead seek 
to change parameters so as to increase its value (e.g. using nonlinear 
optimization, conjugate gradient, etc.).  

•  We can also generalize the E-step by performing a partial, rather than 
complete, optimization of the lower-bound with respect to q.  
•  For example, we can use an incremental form of EM, in which at each 
EM step only one data point is processed at a time.  

•  In the E-step, instead of recomputing the responsibilities for all the data 
points, we just re-evaluate the responsibilities for one data point, and 
proceed with the M-step.  



Maximizing the Posterior 
•  We can also use EM to maximize the posterior p(µ | X) for models in 
which we have introduced the prior p(µ).  

•  To see this, note that: 

•  Decomposing the log-likelihood into lower-bound and KL terms, we 
have:  

•  Hence 

 where lnp(X) is a constant.  
•  Optimizing with respect to q gives rise to the same E-step as for the 
standard EM algorithm.  

•  The M-step equations are modified through introduction of the prior 
term, which typically amounts to only a small modification to the standard 
ML M-step equations.  



Gaussian Mixtures Revisited 
•  We now consider the application of the latent variable view of EM the 
case of Gaussian mixture model.  
•  Recall: 

-- complete dataset. -- incomplete dataset. 



Maximizing Complete Data 
•  Consider the problem of maximizing the likelihood for the complete 
data: 

-- complete dataset. 

•  Maximizing with respect to mixing proportions 
yields:  

•  And similarly for the means and covariances.  

Sum of K independent 
contributions, one for each 
mixture component. 



Posterior Over Latent Variables 
•  Remember: 

•  The posterior over latent variables takes form: 

•  Note that the posterior factorizes over n points, 
so that under the posterior distribution {zn} are 
independent.  

•  This can be verified by inspection of directed 
graph and making use of the d-separation 
property.  



Expected Complete Log-Likelihood 
•   The expected value of indicator variable znk under the posterior 
distribution is: 

•  This represent the responsibility of component k for data point xn.  

•  The expected complete data log-likelihood is:  

•  The complete-data log-likelihood:  



Expected Complete Log-Likelihood 
•   The expected complete data log-likelihood is:  

•  Maximizing the respect to model parameters we obtain:  



Relationship to K-Means 
•  Consider a Gaussian mixture model in which covariances are shared 
and are given by ²I.  

•  Consider EM algorithm for a mixture of K Gaussians, in which we treat ² 
as a fixed constant. The posterior responsibilities take form: 

•  Consider the limit ² ! 0. 
•  In the denominator, the term for which                      is smallest will go 
to zero most slowly. Hence °(znk) ! rnk, where            



Relationship to K-Means 
•   Consider EM algorithm for a mixture of K Gaussians, in which we treat 
² as a fixed constant. The posterior responsibilities take form: 

•  Finally, in the limit ² ! 0, the expected complete log-likelihood 
becomes: 

•  Hence in the limit, maximizing the expected complete log-likelihood is 
equivalent to minimizing the distortion measure J for the K-means 
algorithm.  



Bernoulli Distribution  
•  So far we focused on distributions over continuous variables.  

•  We will now look at mixture of discrete binary variables described by 
Bernoulli distributions.  

•  Consider a set of binary random variables xi, i=1,…,D, each of which is 
governed by a Bernoulli distribution with µi.  

•  The mean and covariance of this distribution are: 



Mixture of Bernoulli Distributions  
•  Consider a finite mixture of Bernoulli distributions: 

•  The mean and covariance of this mixture distribution are: 

where  

•  The covariance matrix is no longer diagonal, so the mixture distribution 
can capture correlations between the variables, unlike a single Bernoulli 
distribution.  



Maximum Likelihood 
•  Given a dataset X = {x1,…,xN}, the log-likelihood takes form: 

•  Again, we see the sum inside the log, so the maximum likelihood 
solution no longer has a closed form solution.  
•  We will now derive EM for maximizing this likelihood function.   

-- complete dataset. -- incomplete dataset. 



Complete Log-Likelihood 
•  By introducing latent discrete random variables, we have: 

•  We can write down the complete log-likelihood 

•  The expected complete-data log-likelihood: 

where  



E-step 
•  Similar to the mixture of Gaussians, in the E-step, we evaluate 
responsibilities using Bayes’ rule: 



M-step 
•  The expected complete-data log-likelihood: 

 where Nk is the effective number of data points associated with 
component k.  

•  Note that the mean of component k is equal to the weighted mean of the 
data, with weights given by the responsibilities that component k takes for 
explaining the data points.  

•  Maximizing the expected complete-data log-likelihood: 



Example 
•  Illustration of the Bernoulli mixture model 

Training data  

Learned µk for the first three 
components. 

A single multinomial 
Bernoulli distribution fit to 
the full data.  


