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Last Class

* |[n our last class, we looked at:

- Statistical Decision Theory

- Linear Regression Models

- Linear Basis Function Models

- Regularized Linear Regression Models
- Bias-Variance Decomposition

* We will now look at the Bayesian framework and Bayesian Linear
Regression Models.



Bayesian Approach

» We formulate our knowledge about the world probabilistically:
- We define the model that expresses our knowledge qualitatively
(e.g. independence assumptions, forms of distributions).
- Our model will have some unknown parameters.

- We capture our assumptions, or prior beliefs, about unknown
parameters (e.g. range of plausible values) by specifying the prior
distribution over those parameters before seeing the data.

e We observe the data.

* We compute the posterior probability distribution for the parameters,
given observed data.

e \We use this posterior distribution to:

- Make predictions by averaging over the posterior distribution
- Examine/Account for uncertainly in the parameter values.
- Make decisions by minimizing expected posterior loss.

(See Radford Neal’s NIPS tutorial on ""Bayesian Methods for Machine Learning”)



Posterior Distribution

e The posterior distribution for the model parameters can be found by
combining the prior with the likelihood for the parameters given the data.

 This is accomplished by using Bayes’ Rule:

P(data | parameters) P(parameters)

P(parameters | data) =

P(data)

Probability of Prior probability of

observed data \ / the weight vector w

given w

S(w(D) — PPIWIPW)
- P(D)
Marginal likelihood

Posterior probability (normalizing constant):
of the weight vector w -
given training data D P(D) = /p(D|W>P(W>dW

This integral can be high-dimensional and is
often difficult to compute.



The Rules of Probability

Sum Rule: p(X)=> p(X,Y)

Product Rule:




Predictive Distribution

* We can also state Bayes’ rule in words:

posterior & likelithood X prior.

» We can make predictions for a new data point x*, given the training
dataset by integrating over the posterior distribution:

p(x*|D) = / p(<* | w, D)p(w|D)dw = Ep(wimy [p(x*|w, D),

which is sometimes called predictive distribution.

e Note that computing predictive distribution requires knowledge of the
posterior distribution:

p(w|D) = p(Dg?;)P;(W)’ where P(D) = [ p(Dlw)P(w)dw

which is usually intractable.



Modeling Challenges

 The first challenge is in specifying suitable model and suitable prior
distributions. This can be challenging particularly when dealing with
high-dimensional problems we see in machine learning.

- A suitable model should admit all the possibilities that are thought
to be at all likely.

- A suitable prior should avoid giving zero or very small probabilities
to possible events, but should also avoid spreading out the
probability over all possibilities.

* We may need to properly model dependencies between parameters
in order to avoid having a prior that is too spread out.

e One strategy is to introduce latent variables into the model and
hyperparameters into the prior.

e Both of these represent the ways of modeling dependencies in a
tractable way.



Computational Challenges

The other big challenge is computing the posterior distribution. There
are several main approaches:

» Analytical integration: If we use “conjugate” priors, the posterior
distribution can be computed analytically. Only works for simple models
and is usually too much to hope for.

e Gaussian (Laplace) approximation: Approximate the posterior
distribution with a Gaussian. Works well when there is a lot of data
compared to the model complexity (as posterior is close to a Gaussian).

e Monte Carlo integration: Once we have a sample from the posterior
distribution, we can do many things. The dominant current approach is
Markov Chain Monte Carlo (MCMC) -- simulate a Markov chain that
converges to the posterior distribution. It can be applied to a wide variety
of problems.

 Variational approximation: A cleverer way to approximate the posterior.
It often works much faster compared to MCMC. But often not as general
as MCMC.



Bayesian Linear Regression

» Given observed inputs X = {x1,xs,...,xn}, and corresponding target
values t = [tq,ts,...,tx]|", WE Can write down the likelihood function:

where ¢(x) = (¢o(x), p1 (%), .-, ng_l(X))T represent our basis functions.

e The corresponding conjugate prior is given by a Gaussian distribution:
p(w) = N(w|myg, Sp).

 As both the likelihood and the prior terms are Gaussians, the posterior
distribution will also be Gaussian.

e |f the posterior distributions p(0|x) are in the same family as the prior
probability distribution p(0), the prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for the likelihood.



Bayesian Linear Regression

« Combining the prior together with the likelihood term:
p(wlt, X, w, B) o [HN ol 3(x,),571) | N (wlmo, So)

* The posterior (with a bit of manipulation) takes the following
Gaussian form:

p(w[t) = N(w|mp, Sn)
where

my = Sy (Sglmo + ﬂ(I)Tt)

Sy, = S;'+p3®e'd.

e The posterior mean can be expresses in terms of the least-squares
estimator and the prior mean:

my = Sy (Sglmo + 5<I>T<I>WML>. wyr = (27 ®) et

* As we increase our prior precision (decrease prior variance), we place
greater weight on the prior mean relative the data.



Bayesian Linear Regression

« Consider a zero mean isotropic Gaussian prior, which is governed by a
single precision parameter «:

p(w) = N(w|0,a"'T)

for which the posterior is Gaussian with:

wyr = (27 ®) et

my = [Sy®'t
Sy, = ol+p32'®

* If we consider an infinitely broad prior, « — 0, the mean my of the
posterior distribution reduces to maximum likelihood value wy,, .

* The log of the posterior distribution is given by the sum of the log-
likelihood and the log of the prior:

Inp(w|D) = Z (tn — ))2 — %WTW + const.

« Maximizing this posterior with respect to w is equivalent to minimizing the
sum-of-squares error function with a quadratic regulation term A = o / 3.



Bayesian Linear Regression

 Consider a linear model of the form: y(z,w) = wg + wyx.

« The training data is generated from the function f(x,a) = ag + a1
with ap = 0.3;a; = 0.5, by first choosing x,, uniformly from [-1;1],
evaluating f(x, a), and then adding a small Gaussian noise.

» Goal: recover the values of ag,a1 from such data.

0 data points are observed:
Data Space




Bayesian Linear Regression

0 data points are observed:

Data Space
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1 data point is observed:

Likelihood Data Space
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Predictive Distribution

» We can make predictions for a new input vector x by integrating over
the posterior distribution:

p(t]t, %, X, , B) — / p(tx, w, B)p(wlt, X, a, B)dw

:N(t|mz]\}¢(x),gj2\f(x))v

where
1 T
X (x) = 2 + o(x)"'Sno(x). my = PNt
/5 \ Sy' = al+p®'®.
Noise in the Uncertainly
target values associated with

parameter values.

* In the limit, as N — oo, the second term goes to zero.
» The variance of the predictive distribution arises only from the additive
noise governed by the parameter 3.



Predictive Distribution: Bayes vs. ML

Predictive distribution based on . o o
the maximum likelihood estimate Bayesian predictive distribution
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p(tlz, wyr, Auw) = N (ty(z, wae), Byr)  ptx, t,X) = N (Hmyé(z), ox (z))



Predictive Distribution

Sinusoidal dataset, 9 Gaussian basis functions.

Predictive distribution Samples from the posterior
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Predictive Distribution

Sinusoidal dataset, 9 Gaussian basis functions.

_Predictive distribution ~ Samples from the posterior




Gamma-Gaussian Conjugate Prior

« So far we have assumed that the noise parameter 3 is known.

* If both w and (3 are treated as unknown, then we can introduce a
conjugate prior distribution that will be given by the Gaussian-Gamma
distribution:

p(W, 5) — N(W|m0, 5_1SO)Gam(5|a0, bo),

where the Gamma distribution is given by:

Gam(S|a,b) = ﬁbaﬁ"’_l exp(—b0), ['(a) = /0 u® e "du.

» The posterior distribution takes the same functional form as the prior:

N(WlmN, 5_1SN)Gam(5|aN, bN>



Equivalent Kernel

* The predictive mean can be written as:

y(x,my) = mJTvcb( ) = Bo(x) ' Sn@t

my = BSN(I)Tt
— Z@cp ) SN xn) Sy, = al+pe'®

Equivalent kernel
or smoother
matrix.

» The mean of the predictive distribution at a time x can be written as a
linear combination of the training set target values.

» Such regression functions are called linear smoothers.



Equivalent Kernel

 The kernel as a covariance function:

/

covly(x),y(x)] = covlep(x)w, wT(x)]
— $(x) SN (X) = B k(x,X)).

* \We can avoid the use of basis functions and define the kernel function
directly, leading to Gaussian Processes.



Bayesian Model Comparison

* The Bayesian view of model comparison involves the use of
probabilities to represent uncertainty in the choice of the model.

« We would like to compare a set of L models {M;}, where i = 1,2, ..., L,
using a training set D.

- We specify the prior distribution over the different models p(M;).

 Given a training set D, we evaluate the posterior:

p(M;|D) o< p(M;)p(D|M;).

Posterior Prior Model evidence or
marginal likelihood

 For simplicity, we will assume that all models are a-priori equal.

» The model evidence expresses the preference shown by the data for
different models.

* The ratio of the two model evidences for two p(D|Mi)
models is known as Bayes factor: p(D|Mj)




Bayesian Model Comparison

« Once we compute the posterior p(M;|D), we can compute the
predictive (mixture) distribution:

L
p(t|x, D) = ZP(ﬂX,Mi,D)p(Mi\D)-
i=1
» The overall predictive distribution is obtained by averaging the predictive
distributions of individual models, weighted by the posterior probabilities.

» For example, if we have two models,
and one predicts a narrow distribution
around t=a while the other predicts a
narrow distribution around t=b, then the
overall predictions will be bimodal: t=a t =50

A simpler approximation, known as model selection, is to use the model
with the highest evidence.



Bayesian Model Comparison

« Remember, the posterior is given by
p(M;|D) o p(M;)p(D|M,).

For a model governed by a set of parameters w, the model evidence can
be computed as follows:

p<D|TMZ-> _ / p(Dlw, My)p(w|M;) dw

» Observe that the evidence is the normalizing term that appears in the
denominator of Bayes’ rule:

p(W‘D,Mz) —

p(Dw, M;)p(w|M;)
P(D\Mz‘)

T

* The model evidence is also often called marginal likelihood.




Bayesian Model Comparison

* We next get some insight into the model evidence by making simple
approximations.

. ) . Aprosterior
* For a given model with a single parameter, w, +—>

consider the following approximations: f \

- Assume that the posterior is picked
around the most probable value wWy;ap,
Wlth Wldth Awposterior

- Assume that the prior is flat / j \ \
with width Awpior "

WMAP w

< >

p(D) = / p(Dlw)p(w) du Ao,

Awposterior

Arwprior

~ p(D|wmapr)



Bayesian Model Comparison

 Taking the logarithms, we obtain:

Au/’posterior )
Arwprior
Y
Negative

Inp(D) ~ In p(D|wmap) + In (

» With M parameters, all assumed to have the same Awposterior/ AWprior

ratio:
Aprosterior )

AUf"'prior

Inp(D) ~ Inp(D|wyap) + M In (

Y
Negative and linear in M.

« As we increase the complexity of the model (increase the number of
adaptive parameters M), the first term will increase, whereas the second
term will decrease due to the dependence on M.

* The optimal model complexity: trade-off between these two competing
terms.



Bayesian Model Comparison

p(D) Matching data and

My  For the particular observed

model complexity dataset Dy, the model M, with
M intermediate complexity has the
2 largest evidence.

\ .

D

=

Dq

* The simple model cannot fit the data well, whereas the more complex
model spreads its predictive probability and so assigns relatively small
probability to any one of them.

» The marginal likelihood is very sensitive to the prior used!

« Computing the marginal likelihood makes sense only if you are certain
about the choice of the prior.



Evidence Approximation

* In the fully Bayesian approach, we would also specify a prior distribution
over the hyperparameters p(a, [3).

 The fully Bayesian predictive distribution is then given by
marginalizing over model parameters as well as hyperparameters:

Likelihood posterior posterior over
over weights hyperparameters

p(t*|x*, D) = ///p(t*|x*,w,5)p(w\D, a, B)p(a, B|D)dwdads.

11 1 I

target and input precision of precision training data:
on test case output noise of the prior  inputs and targets

* However, this integral is intractable (even when everything is Gaussian).
Need to approximate.

* Note: the fully Bayesian approach is to integrate over the posterior
distribution for {«, 8, w}. This can be done by MCMC, which we will
consider later. For now, we will use evidence approximation: much faster.



Evidence Approximation

 The fully Bayesian predictive distribution is given by:
p(t'1x". D) = [ [ [ ot 1x w0 B)p(wiD. . Bp(a. fiD)dwdads.

* If we assume that the posterior over hyperparameters o« and g is
sharply picked, we can approximate:

p(t*|x*, D) ~ p(t*|x*D, &, §) = / p(t*|x*, D, B)p(w|D, &, 5)dw.
where (a, 3) is the mode of the posterior p(a, 3|D).

» S0 we integrate out parameters but maximize over hyperparameters.

 This is known as empirical Bayes, Type || Maximum Likelihood,
Evidence Approximation.



Evidence Approximation

* From Bayes’ rule we obtain:
p(a, Blt, X) o< p(t|X, o, B)p(a, B).
» If we assume that the prior over hyperparameters p(a, () is flat, we

get:
ple, B]t, X) o< p(t|X, a, B).

* The values (@, 3) are obtained by maximizing the marginal likelihood
p(t[X, o, ).

 This will allow us to determine the values of these hyperparameters
from the training data.

» Recall that the ratio o/ is analogous to the regularization parameter.



Evidence Approximation

* The marginal likelihood is obtained by integrating out parameters:

p(tX, a0, B) = / p(t1X, w, B)p(wia)dw.  [mn — 3S~aTt
Sy, = al+p38'®.

* \We can write the evidence function in the form:

p(EX, 0, 3) = (%)m (22)"" [exn(~ Bw)aw,

where

E(w) = 8Ep(w) + aEw(w) = §||t _®wl|)? 1+ %WTW.

» Using standard results for the Gaussian distribution, we obtain:
M N 1 N

Inp(tla, B) = > Ina + 5} Ing— E(mpy) + 5 In[Sy| — 5} In(27).



Some Fits to the Data

M=0 A 1 o0

M

9

For M=9, we have fitted the training data perfectly.




Evidence Approximation

Using sinusoidal data, Mt degree polynomial.

The evidence favours the model with M=3.



Maximizing the Evidence

* Remember;

M N 1 N
Inp(t|a, B) = l? Ina + 5 Ing— E(my)+ 5 In|[Sn| — 0} In(27).

- To maximize the evidence p(t|X, a, 3) with respect to o and 3, define
the following eigenvector equation:

(ﬁ‘I)Té[)) u; = \;u;. Precision matrix of the
Gaussian posterior
« Therefore the matrix: — distribution

A=Sy' =al+p3%'®
has eigenvalues a + \..

* The derivative:

q 1
%1n|A| _IDHO‘JF/\ daZlnaJr/\) ZOA—I—M.

/




Maximizing the Evidence

* Remember;

M N 1 N
Inp(tla, B) = l? Ina + 5 Ing— E(my)+ 5 In|[Sn| — 5 In(27).
where
o)

- Differentiating In p(t|«, 3), the stationary points with respect to a
satisfy:

M 1 1 1
———m%mN——Z 0.

2 2 24 a+);
am%mN:M—aZ ! =
y o+ A\

where the quantity ~, effective number of parameters, can be defined as:

Ai




Maximizing the Evidence

» The stationary points with respect to a satisfy:

1 —_
Oz—|—>\z -

amimy =M —a g Y,
i

where the quantity ~, effective number of parameters, is defined as:

\s
v = Z 3 L Note that the
i i T eigenvalues need to be
computed only once.

* Iterate until convergence:

a=—1— =% Ai . my = [Sy®'t
mym’ Aital sl = oI+ peTe.
« Similarly: 1

1 al T 2
- tn_m ¢<Xn)



Effective Number of Parameters

» Consider the contours of the likelihood function and the prior.

* The eigenvalue )\, measures the
U2 curvature of the log-likelihood function.
WML > * The quantity v will lie 0 <~ < M.
"WALAP « For \; > «, the corresponding

parameter w; will be close to its
maximum likelihood. The ratio:

w1 i

eigenvalue ), is less than A,. N -«
7

will be close to one.

I
* Such parameters are called well determined, as their values are highly
constrained by the data.

* For \; < «, the corresponding parameters will be close to zero (pulled
by the prior), as will the ratio \;/(\; + «).

» We see that v measures the effective total number of well determined
parameters.



Quick Approximation

* In the limit N > M , v = M, and we consider to use the easy to compute
approximations:

M

m%m]\r




Limitations

* M basis function along each dimension of a D-dimensional input
space requires MP basis functions: the curse of dimensionality.

 Fortunately, we can get away with fewer basis functions, by
choosing these using the training data (e.g. adaptive basis functions),
which we will see later.

» Second, the data vectors typically lie close to a nonlinear low-
dimensional manifold, whose intrinsic dimensionality is smaller than
that of the input space.



