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Last Class 
•  In our last class, we looked at: 

-  Statistical Decision Theory  
-  Linear Regression Models 
-  Linear Basis Function Models 
-  Regularized Linear Regression Models  
-  Bias-Variance Decomposition  

•  We will now look at the Bayesian framework and Bayesian Linear 
Regression Models. 



Bayesian Approach 
•  We formulate our knowledge about the world probabilistically:  

-  We define the model that expresses our knowledge qualitatively 
(e.g. independence assumptions, forms of distributions).   

•  We observe the data. 
•  We compute the posterior probability distribution for the parameters, 
given observed data.  

•  We use this posterior distribution to: 
-  Make predictions by averaging over the posterior distribution 
-  Examine/Account for uncertainly in the parameter values.  
-  Make decisions by minimizing expected posterior loss.  

(See Radford Neal’s NIPS tutorial on ``Bayesian Methods for Machine Learning'’)  

-  Our model will have some unknown parameters. 
-  We capture our assumptions, or prior beliefs, about unknown 
parameters (e.g. range of plausible values) by specifying the prior 
distribution over those parameters before seeing the data. 



Posterior Distribution 
•  The posterior distribution for the model parameters can be found by 
combining the prior with the likelihood for the parameters given the data.  

•  This is accomplished by using Bayes’ Rule: 

Marginal likelihood 
(normalizing constant): 

This integral can be high-dimensional and is 
often difficult to compute.  

Posterior probability 
of the weight vector w 
given training data D 

Probability of 
observed data 
given w 

Prior probability of 
the weight vector w 



The Rules of Probability 

Sum	  Rule:	  

Product	  Rule:	  



Predictive Distribution 
•  We can also state Bayes’ rule in words: 

which is sometimes called predictive distribution.  

•  Note that computing predictive distribution requires knowledge of the 
posterior distribution: 

where  

which is usually intractable.  

•  We can make predictions for a new data point x*, given the training 
dataset by integrating over the posterior distribution:  



Modeling Challenges 
•  The first challenge is in specifying suitable model and suitable prior 
distributions. This can be challenging particularly when dealing with 
high-dimensional problems we see in machine learning.  

•  We may need to properly model dependencies between parameters 
in order to avoid having a prior that is too spread out.  

-  A suitable model should admit all the possibilities that are thought 
to be at all likely. 
-  A suitable prior should avoid giving zero or very small probabilities 
to possible events, but should also avoid spreading out the 
probability over all possibilities.   

•  One strategy is to introduce latent variables into the model and 
hyperparameters into the prior.  

•  Both of these represent the ways of modeling dependencies in a 
tractable way.  



Computational Challenges 
The other big challenge is computing the posterior distribution. There 
are several main approaches:  

•  Analytical integration: If we use “conjugate” priors, the posterior 
distribution can be computed analytically. Only works for simple models 
and is usually too much to hope for.  

•  Gaussian (Laplace) approximation: Approximate the posterior 
distribution with a Gaussian. Works well when there is a lot of data 
compared to the model complexity (as posterior is close to a Gaussian).  

•  Monte Carlo integration: Once we have a sample from the posterior 
distribution, we can do many things. The dominant current approach is 
Markov Chain Monte Carlo (MCMC) -- simulate a Markov chain that 
converges to the posterior distribution. It can be applied to a wide variety 
of problems.  
•  Variational approximation: A cleverer way to approximate the posterior. 
It often works much faster compared to MCMC. But often not as general 
as MCMC.  



Bayesian Linear Regression 
•  Given observed inputs                                    and corresponding target 
values                                we can write down the likelihood function: 

where                                                           represent our basis functions.            

•  The corresponding conjugate prior is given by a Gaussian distribution: 

•  As both the likelihood and the prior terms are Gaussians, the posterior 
distribution will also be Gaussian.  

•  If the posterior distributions p(θ|x) are in the same family as the prior 
probability distribution p(θ), the prior and posterior are then called conjugate 
distributions, and the prior is called a conjugate prior for the likelihood.  



Bayesian Linear Regression 
•  Combining the prior together with the likelihood term: 

•  The posterior (with a bit of manipulation) takes the following 
Gaussian form: 

where            

•  The posterior mean can be expresses in terms of the least-squares 
estimator and the prior mean:  

•  As we increase our prior precision (decrease prior variance), we place 
greater weight on the prior mean relative the data.  



Bayesian Linear Regression 
•  Consider a zero mean isotropic Gaussian prior, which is governed by a 
single precision parameter ®: 

•  If we consider an infinitely broad prior, ® ! 0, the mean mN of the 
posterior distribution reduces to maximum likelihood value wML.   

for which the posterior is Gaussian with: 

•  The log of the posterior distribution is given by the sum of the log-
likelihood and the log of the prior:  

•  Maximizing this posterior with respect to w is equivalent to minimizing the 
sum-of-squares error function with a quadratic regulation term ¸ = ® / ¯.  



Bayesian Linear Regression 
•  Consider a linear model of the form:  
•  The training data is generated from the function                                    
  with                              by first choosing xn uniformly from [-1;1],  
  evaluating             and then adding a small Gaussian noise. 

•  Goal: recover the values of            from such data. 

0 data points are observed:  
Prior	   Data	  Space	  



Bayesian Linear Regression 
Prior	   Data	  Space	  0 data points are observed:  

1 data point is observed:  
Likelihood	   Posterior	   Data	  Space	  



Bayesian Linear Regression 
0 data points are observed.  

1 data point is observed.  

2 data points are observed.  

20 data points are observed.  



Predictive Distribution 
•  We can make predictions for a new input vector x by integrating over 
the posterior distribution:  

where  

•  In the limit, as N ! 1, the second term goes to zero.  
•  The variance of the predictive distribution arises only from the additive 
noise governed by the parameter ¯.  

Noise in the 
target values 

Uncertainly 
associated with 
parameter values. 



Predictive Distribution: Bayes vs. ML 

Bayesian predictive distribution 
Predictive distribution based on 
the maximum likelihood estimate 



Predictive Distribution 
Sinusoidal dataset, 9 Gaussian basis functions.  

Predictive distribution Samples from the posterior 



Predictive Distribution 
Sinusoidal dataset, 9 Gaussian basis functions.  

Predictive distribution Samples from the posterior 



Gamma-Gaussian Conjugate Prior 
•  So far we have assumed that the noise parameter ¯ is known.  

•  If both w and ¯ are treated as unknown, then we can introduce a 
conjugate prior distribution that will be given by the Gaussian-Gamma 
distribution: 

where the Gamma distribution is given by: 

•  The posterior distribution takes the same functional form as the prior: 



Equivalent Kernel 
•  The predictive mean can be written as: 

Equivalent	  kernel	  
or	  smoother	  
matrix.	  

•  The mean of the predictive distribution at a time x can be written as a 
linear combination of the training set target values.  

•  Such regression functions are called linear smoothers.  



Equivalent Kernel 

•  We can avoid the use of basis functions and define the kernel function 
directly, leading to Gaussian Processes.  

•   The kernel as a covariance function: 



Bayesian Model Comparison 
•  The Bayesian view of model comparison involves the use of 
probabilities to represent uncertainty in the choice of the model. 

•  We specify the prior distribution over the different models  

•  Given a training set D, we evaluate the posterior:  

Posterior	   Prior	   Model	  evidence	  or	  
marginal	  likelihood	  

•  The model evidence expresses the preference shown by the data for 
different models.  
•  The ratio of the two model evidences for two  
models is known as Bayes factor: 

•  For simplicity, we will assume that all models are a-priori equal.  

•  We would like to compare a set of L models             where  
using a training set D.    



Bayesian Model Comparison 
•  Once we compute the posterior                 we can compute the 
predictive (mixture) distribution: 

•  A simpler approximation, known as model selection, is to use the model 
with the highest evidence. 

•  The overall predictive distribution is obtained by averaging the predictive 
distributions of individual models, weighted by the posterior probabilities. 

•  For example, if we have two models, 
and one predicts a narrow distribution 
around t=a while the other predicts a 
narrow distribution around t=b, then the 
overall predictions will be bimodal:  



Bayesian Model Comparison 
•  Remember, the posterior is given by    

For a model governed by a set of parameters w, the model evidence can 
be computed as follows: 

•  The model evidence is also often called marginal likelihood.  

•  Observe that the evidence is the normalizing term that appears in the 
denominator of Bayes’ rule:  



Bayesian Model Comparison 
•  We next get some insight into the model evidence by making simple 
approximations.  

•  For a given model with a single parameter, w, 
consider the following approximations:  

-  Assume that the prior is flat  
  with width 

-  Assume that the posterior is picked 
around the most probable value              
with width 



Bayesian Model Comparison 
•  Taking the logarithms, we obtain: 

NegaCve	  

•  With M parameters, all assumed to have the same  
  ratio: 

NegaCve	  and	  linear	  in	  M.	  

•  As we increase the complexity of the model (increase the number of 
adaptive parameters M), the first term will increase, whereas the second 
term will decrease due to the dependence on M.  
•  The optimal model complexity: trade-off between these two competing 
terms.  



Bayesian Model Comparison 

•  The simple model cannot fit the data well, whereas the more complex 
model spreads its predictive probability and so assigns relatively small 
probability to any one of them.   

Matching data and  
model complexity 

•  For the particular observed 
dataset        the model         with 
intermediate complexity has the 
largest evidence.   

•  The marginal likelihood is very sensitive to the prior used!   
•  Computing the marginal likelihood makes sense only if you are certain 
about the choice of the prior.  



Evidence Approximation 

•  The fully Bayesian predictive distribution is then given by 
marginalizing over model parameters as well as hyperparameters:   

•  However, this integral is intractable (even when everything is Gaussian). 
Need to approximate.  

target and input 
on test case 

precision of 
output noise 

precision 
of the prior 

training data:  
inputs and targets 

Likelihood posterior 
over weights 

posterior over 
hyperparameters 

•  In the fully Bayesian approach, we would also specify a prior distribution 
over the hyperparameters 

•  Note: the fully Bayesian approach is to integrate over the posterior   
distribution for                 This can be done by MCMC, which we will 
consider later. For now, we will use evidence approximation: much faster.   



Evidence Approximation 
•  The fully Bayesian predictive distribution is given by:   

•  If we assume that the posterior over hyperparameters ® and ¯ is 
sharply picked, we can approximate:  

•  So we integrate out parameters but maximize over hyperparameters.  

•  This is known as empirical Bayes, Type II Maximum Likelihood, 
Evidence Approximation.   

where             is the mode of the posterior 



Evidence Approximation 
•  From Bayes’ rule we obtain: 

•  If we assume that the prior over hyperparameters               is flat, we 
get:  

•  The values             are obtained by maximizing the marginal likelihood 

•  This will allow us to determine the values of these hyperparameters 
from the training data.  

•  Recall that the ratio ®/¯ is analogous to the regularization parameter.  



Evidence Approximation 
•  The marginal likelihood is obtained by integrating out parameters: 

•  We can write the evidence function in the form: 

where 

•  Using standard results for the Gaussian distribution, we obtain: 



Some Fits to the Data 

For M=9, we have fitted the training data perfectly.  



Evidence Approximation 
Using sinusoidal data, Mth degree polynomial.  

The evidence favours the model with M=3.  



Maximizing the Evidence 

•  To maximize the evidence                       with respect to ® and ¯, define 
the following eigenvector equation: 

•  Therefore the matrix: 

has eigenvalues ® + ¸i.  

Precision matrix of the 
Gaussian posterior 
distribution 

•  The derivative: 

•  Remember: 



Maximizing the Evidence 

where the quantity °, effective number of parameters, can be defined as: 

•  Differentiating                   ,  the stationary points with respect to ® 
satisfy: 

•  Remember: 

where 



•  Similarly: 

Maximizing the Evidence 
•  The stationary points with respect to ® satisfy: 

where the quantity °, effective number of parameters, is defined as: 

•  Iterate until convergence: 

Note	  that	  the	  
eigenvalues	  need	  to	  be	  
computed	  only	  once.	  



Effective Number of Parameters 
•  Consider the contours of the likelihood function and the prior.  

eigenvalue ¸1 is less than ¸2.  

•  The eigenvalue ¸i measures the 
curvature of the log-likelihood function.  

•  The quantity ° will lie 0 · ° · M. 

•  For                the corresponding 
parameter wi will be close to its 
maximum likelihood. The ratio:    

will be close to one.  

•  Such parameters are called well determined, as their values are highly 
constrained by the data.  
•  For                the corresponding parameters will be close to zero (pulled 
by the prior), as will the ratio  

•  We see that ° measures the effective total number of well determined 
parameters.  



•  In the limit               , ° = M, and we consider to use the easy to compute 
approximations:    

Quick Approximation 



Limitations 
•  M basis function along each dimension of a D-dimensional input 
space requires MD basis functions: the curse of dimensionality. 

•  Fortunately, we can get away with fewer basis functions, by 
choosing these using the training data (e.g. adaptive basis functions), 
which we will see later. 

•  Second, the data vectors typically lie close to a nonlinear low-
dimensional manifold, whose intrinsic dimensionality is smaller than 
that of the input space.   


