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Random Projection has recently been used as a promising dimensionality reduction
technique. Using random projection can speed up the finding of approximate nearest
neighbors (NN) but it can’t easily be used for exact NN. On the other hand, k-d tree and
other related data structures can find exact NN, but as the dimensionality of the feature
space increases these structures become quickly inefficient. The computational cost of
these tree data structures grow almost exponentially with the intrinsic dimensionality of
the data. In this thesis, we present experimental results evaluating the performance of
exact and approximate methods for NN search on a variety of real and synthetic data
sets. Finally, we present a hybrid model of Multiple Random Projection (MRP) and k-d
tree to find approximate nearest neighbors in high dimension. The experimental results
show that this hybridization results in improved performance w.r.t. number of distance

calculations needed to find NN.
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Chapter 1

Introduction

The Nearest Neighbor (NN) Search problem arises in various fields of Computer Science.
Basically there are two flavors of the problem: exact NN and approximate NN. The
problem is the following: Given a set P of points in a high-dimensional space, construct
a data structure which given a query point ¢ finds the point in P closest to ¢ (for exact
NN) or a close approximation to the nearest point of ¢ (for approximate NN).

The above problem is of significant importance to pattern recognition, searching in
multimedia data, vector compression [1], computational statistics [2], data mining etc.
Many of these applications involve data sets which are very large and moreover the
dimensionality of the data points can be in the order of hundreds or thousands; both of
these factors make it a challenging computational problem.

In this thesis, we have considered the most commonly used settings of nearest neighbor
search problem where the points are in R% and the distance metric is Euclidean. That
is, for points x = {x1,%9,...,24} and y = {y1,¥y2, ..., Ya}, the distance between them is

defined as

d(z,y) = (Xd:(x - yi)2> v

i=1
There is quite a handful of literature for the Euclidean nearest-neighbor problem. If

the points lie in the plane i.e. d = 2, the nearest-neighbor problem can be solved with
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O(logn) per query and with a storage requirement of O(n) [3, 4] using divide-and-conquer
paradigm. Unfortunately, as the dimensionality increases such algorithms become less
and less efficient. Their space and time requirements grow ezponentially in the dimension.
Many researchers have studied the theoretical aspects of the exact NN problem. For ex-
ample, Dobkin and Lipton [5] give an upper bound of order O(2%logn) with pre-processing
time O(n2""") to answer a nearest neighbor query in R? (the term pre-processing refers
to the the sum of pre-processing time and storage requirements). Clarkson [6] improved
that with a query time O(24% . logn) and pre-processing O(n!#21(+9)) Most of the
subsequent approaches and extensions (e.g. [7, 8]) have required a query time of at least
Q299 . logn). Meiser [9] has given a solution which is an exception to this phenomenon
of the exponential dependence on d. His solution has a query time of O(d’logn) with

storage O(n?*c).

The lack of success in removing the exponential dependence on the dimension led
researchers to find alternative path for solutions: mainly, whether we can remove the
exponential dependence on d if we allow the answers to be approrimate. The notion of
approximation is explained as the following: instead of reporting a point p that is closest
to ¢, the algorithm can report any point within distance (1 + €) times the distance from
q to p. Formally, we say that p € P is an e-approzimate nearest neighbor of ¢ if for all
p' € P, we have d(p,q) < (1 + €)d(p/,q). Another way to define approximate solution
is: instead of reporting the closest point p to ¢, we can report any point if it can be
found within any of the K exact NN of g. Settling for an approximate algorithms makes
sense as the methods used for mapping features to numerical coordinates in many of the
applications have been chosen on heuristic grounds, and so an “approximate” answer may

be almost as valuable as an “exact” one.

The e-approximate nearest neighbor problem, for arbitrary small € > 0 has also been
studied extensively. Arya, Mount et al. [12, 13] gave an algorithm with query time

0249 . e=logn) and pre-processing O(nlogn). Clarkson [14] obtained an algorithm
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where he improves the dependence on € to 244 .¢(@=1)/2 Byt again, these results are still
exponentially dependent on d. Kleinberg [15] gave a conceptually simple algorithm with
query time O((%)(dlog® d)(d +logn)) and storage O(nlogd)*’. Although its query time
is polynomial in d, its storage is prohibitively large. An improved version of the algorithm
is also presented in the same paper which has a query time O((%logé~!)(n + dlog®n))

with near-linear storage but may fail at query time with probability J.

There are several things to be noted here. First, the brute force (naive nearest)
approach which computes the distance from query point to every other point in every
dimension has a query time O(dn), is faster (even theoretically) when the dimension d is
not less than logn. Also, if we want the storage cost to be polynomial in n (for variable
d) then there exists no algorithm that is better than the naive nearest approach once d
is comparable to logn [15]. This phenomenon is known as curse of dimensionality. As
qouted in Arya, Mount, et al.[13],“... if the dimension is significantly larger than logn
(as it for number of practical instances), there are no approaches we know of that are

significantly faster than brute-force search.”

One another approximate method called Locality Sensitive Hashing (LSH), introduced
by Indyk and Motwani, has a worst-case query time of O(dn'/€) [16]. A significant im-
provement of this technique was later presented in [17] whose running time is O (dn'/(19)
which is sublinear in n for any € > 0. The idea of LSH is to hash the points with multiple
hash functions so that for each of the hash function, the probability of collision for closer
points are much greater than the points which are further apart. The query point is then
hashed and NN can be determined by retrieving elements stored at that position. LSH

uses [; norm rather than /s and requires that all coordinates must be positive.

In this thesis, we develop a new approach of finding approximate nearest neighbor
by combining the advantages of both exact and approximate nearest neighbor technique.
We will use multiple random projections to reduce the dimensionality (an idea from

approx. NN) and then use a fast exact nearest neighbor algorithm (such as k-d tree) in
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the projections to find the closest point. This scheme has a resemblance with LSH in the
sense that it uses multiple random projection instead of multiple hash function to find
NN. It appears that this practical method achieves better results in terms of number of
distance calculations needed to find the nearest point than other methods including brute
force, k-d tree and other approximate algorithms in very high dimensions. The higher
the dimension, the greater the savings in distance calculations.

This thesis is organized as follows. Chapter 2 describes the ezact nearest neigh-
bor techniques and some experimental results applying those methods. Chapter 3 talks
about the approximate nearest neighbors. In Chapter 4 we present our new idea of com-
bining multiple random projections with one of the exact nearest neighbor approaches

and evaluate its performance. Chapter 5 discusses future work and conclusions.



Chapter 2

Exact Nearest Neighbor

The exact nearest neighbor (NN) search problem is defined as the following:

We are given a set P of n sites {p1, ps, ..., pn}, Where each site is a point in R%. We
must pre-process P in such a way so that we can efficiently answer queries of the following
form: Given an arbitrary query point ¢ € R?, return the site in P that is “closest” to ¢
under a given distance function.

The definition of “closest” we study in this thesis is the Euclidean distance measure-
ment or /s norm which is defined in the previous chapter. Mathematically, we want to

find the point p € P which has the minimum distance from q i.e.
lg—pll <llg—pI VP eEP

where |lg — p||> = =L, (¢ — pi)*

There are several exact nearest neighbor techniques we will consider:
1. NaiveNearest

2. k-d tree

3. R-tree

4. Ball tree
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5. SR-tree

2.1 Naive Nearest

This approach is the most naive approach (it goes by its name). It is a brute force method
where we calculate the distance for each point from the query point, in every dimension.
The complexity of this method is O(dn). Here, d is the number of dimensions and n is
the number of points.

The following is the pseudo-code for finding nearest neighbor of the query point ¢

from the points in P in brute force approach:

Algorithm 1 Nearest Neighbor Search in Naive Nearest (Brute Force) approach
nearest < NA
dymin < 00 {initialize minimum distance to oo }
for j=1:n do
dg; < 0 {dy; is the distance between point ¢ and p;, initialized to 0}
for k=1:d do
dgj < dgj + (qk - p§)2
end for
if (dqj < dmzn) then
nearest < p; {Store the nearest point so far}
dmin — dqj
end if
end for
output nearest

2.1.1 Naive Nearest with Early Break

The Early Break (EB) strategy stems from the observation that, for Euclidean distance
metric (or for any distance metric which is additive across dimensions), we do not need
to compute distances in all the dimensions. When the distance between a point p and
query point g exceeds the minimum distance found so far, we can safely discard that

point because it can’t be the closest one. In fact, this strategy exhibits significant saving
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in distance calculation that is needed to find the nearest point. The complexity of the

method is still O(dn) though.
The Early Break strategy calculates distance in the following way:

Algorithm 2 Nearest Neighbor Search in Naive Nearest with Early Break strategy
Amin < oo {initialize minimum distance to oo}
nearest < NA
for j=1:n do
dg; < 0 {d,; is the distance between point ¢ and p;, initialized to 0}
for k=1:d do
dgj < dgj + (qk - p?)Q
if (dqj > dmm) then
break; {break the loop when the distance exceeds the minimum distance}
end if
end for
if (dqj < dmzn) then
nearest <— p; {Store the nearest point so far}
dmm — dqj
end if
end for
output nearest

In algorithm 2, the first 4f statement in 2nd for loop checks whether the partial
distance between query point ¢ and p; exceeds the minimum distance found so far from

q. If it does then it exits the loop.

2.1.2 Naive Nearest with Annulus Bound

The Annulus Bound (AB) method [24] is a nearest neighbor search algorithm designed
specifically for Vector Quantization. It is based on geometric observation. As shown in

the figure 2.1, any point p; that is closer to query point ¢ than p, must satisfy

lgll =7 < llp:ll < llgll + 7

where 7 = ||¢ — py||. This constraint defines a annular region.
To implement this algorithm, we maintain a list of points sorted by their norm. We

then guess a point p,. To find the closest point, we enumerate those points, whose norms
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Figure 2.1: In Annulus Bound method if a point p; is closer to the query point ¢ than
another point p, then ||p;|| lies between ||¢|| — 7 and ||g|| + r where r = ||g — p,]|.
lie in the range [||q|| — r, ||g|| + 7]. We shrink the radius 7 of this search as we find closer
points and iterate the procedure again (although, in practice, this shrinking of radius has
little impact on the performance [24]).

The running time of this algorithm is still O(dn) but proportional to the number of
points which lie in the annulus. Algorithm 3 describes how NN search is performed in

Annulus Bound method.

2.2 k-d tree

The k-d tree [18, 19] is a multidimensional binary tree data structure that supports
nearest neighbor and other spatial searches.

Both leaf and internal node of the k-d tree store points which are d-dimensional
vectors. An internal node also stores an index 7 (which is the index of the dimension of
the point stored in that internal node) and a value s (which is the value of that dimension)
that are used to “split” the nodes into left and right subtrees. The left subtree contains

those nodes where the value of its ith coordinate is less than or equal to s, the right
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Algorithm 3 NN search in Naive Nearest with Annulus Bound
Find norm of all n points from a reference point & sort them.
7 < |lg — pyl| {py is the guessed point}
dymin < 00 {initialize minimum distance to oo}
nearest < NA;
done <« false
while (not done) do

L llgll =
u < llgll + 7
Let [; and u; denote the lower and upper index of points whose norm lie between [
& u and set done < true
for j =1; :u; do
dg; < 0 {dy; is the distance between point ¢ and p;, initialized to 0}
for k=1:d do
dgj < dgj + (4" — p;?)z
if (dqj > dmm) then
break;
end if
end for
if (dqj < dmm) then
nearest <— p; {Store the nearest point so far}
dmin < dqj
r = sqrt(dmin)
done < false
break;
end if
end for
end while
output nearest
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Figure 2.2: A 2-dimensional k-d tree. The filled circles in (a) are the 2 dimensional
vectors. The [3,2] node splits the vectors along the line z = 3. All vectors in left subtree
has x coordinate less or equal to 3 and the right subtree contains all vectors with x
coordinate greater than 3. The corresponding tree diagram is shown in (b).

subtree contains those nodes where the value of its ¢th coordinate is greater than s.
For 2-dimensional vectors, all the internal nodes partition the data along a line which is
perpendicular to one of the axis. In figure 2.2(a), the internal node [3,2] has i = 1 and
s = 3 and it splits the vectors of the relevant subtree along the line x = 3. The left subtree
consists of all the vectors whose z-coordinate is less than or equal to x, and the rigth
subtree consists of all the vectors that have their x-coordinate greater than x. Likewise,
the [1,4] node splits the vectors along the line y = 4 and [5,3] node splits along the line
y = 3. Figure 2.2(b) shows the corresponding tree diagram of these points. In higher
dimension, for each internal node, the data is partitioned along a splitting plane that is
perpendicular to some axis. In this thesis, we’ve constructed the k-d tree as described in
[25]. A balanced (an optimization of a tree which aims to keep equal numbers of items
on each subtree of each node so as to minimize the maximum path from the root to any
leaf node) k-d tree of height [log,n] can be built in O(dnlogn) time and uses O(dn)

space [18].
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2.2.1 Searching in k-d tree

The nearest neighbor search algorithm for k-d tree is performed by applying the algorithm
presented in [25]. The search starts at the root of the tree and proceeds down towards
the leaves recursively. At a leaf node, the distance between the query vector and the
vector stored in that leaf is computed. At an internal node, we first search recursively
down to find the subtree where the query vector falls in. If the ith coordinate of the
query vector is less than or equal to s, we search down the left subtree, and if it is not,
we search down the right subtree. When the recursive call returns, we check whether we
have to search the other subtree as well. If the distance between the query vector and the
splitting plane is less than the distance between the query vector and the closest point
found thus far, then it is possible to find a vector which is closer to the query point in
the other subtree. If that is the case, then we must search the other subtree as well.

It is clear that on average, at least 2(logn) nodes must be searched because any
nearest neighbor searching requires traversal to at least one leaf from root. It is also clear
that no more than n nodes are searched in the worst case. Friedman, Bentley and Finkel
[18] have shown that, the amount of backtracking needed is independent on n. While this
cost is independent of n, it is exponentially dependent on d, the dimensionality of the
data vectors [25]. Thus, when the dimensionality of the data vectors is low, the expected

number of vectors searched in k-d tree is O(logn).

2.3 R-tree

An R-tree [21] is a height balanced tree. The index records in the leaf nodes contain
pointers to data objects. Every leaf node of an R-tree contains an index record of the
form (I tuple-identifier) where I is a d-dimensional rectangle which is the bounding box
of the data object indexed I = ([1, I, ..., I;). Here, d is the number of dimensions and I;

is the closed bounded interval [a, b] describing the extent of the object along dimension
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Non-leaf nodes contain entries of the form (7, child-pointer) where child-pointer points
to a lower node in the R-tree and I is the minimum bounding rectangle of all the rectangles
of the node’s children.

An R-tree satisfies the following property:

e Every leaf node contains maximum of M and minimum of m < % index records.
Every non-leaf node contains between m and M children unless it is the root. The

root has at least 2 children.

e For each leaf entry (I tuple-identifier) and for each non-leaf entry (I,child-pointer),

1 is the smallest rectangle that spatially contains the rectangles in the child node.
e All leaves appear at the same level.

The height of an R-tree containing n index records or n points is at most [log,,n| —1,
because the branching factor of each node is at least m. The number of non-leaf nodes
in an R-tree is maximum when all the nodes possess at most m children. So, other than
the root, all other non-leaf nodes have worst case space utilization when they have m
children i.e. the worst case space utilization for all nodes except root node is 7;. When
the nodes tend to have more than m entries, the tree height will decrease and improve
space utilization.

An algorithm for inserting a new data vector in an R-tree is given in [21]. Inserting a
new data vector in an R-tree depends on choosing the leaf node where the vector is to be
inserted and invoking of node splitting algorithm if there is no room for the new vector
on that chosen leaf node. The choosing of leaf node takes O(dlog,, n) time. The split
node algorithm that we have used here is quadratic in M and linear in d [21].

The search algorithm of an R-tree can be implemented as [26]. This is a branch-and-
bound traversal algorithm. If the ordering and pruning heuristics are chosen well, they

can significantly reduce the number of nodes visited in a large search space [26].
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2.4 Ball Tree

The Ball tree [22] is a simple geometric data structure and well suited to geometric
learning tasks. The Ball tree structure is related to other hierarchical representations
such as k-d trees, octrees [23], SS tree [20]. According to [22], a ball is referred to be a
region bounded by a hypersphere in d-dimensional Euclidean space R¢. The balls are
represented by d+1 floating point values which specify the coordinates of its center and
the length of its radius. A Ball tree is a complete binary tree. In a Ball tree, every node
is represented as a ball in such a way that each interior node’s ball is the smallest which

contains the balls of its children.

\

oo

(a) (b)

Figure 2.3: Ball tree structure. The filled circles in (a) are leaves of the tree which
contain the d dimensional points. Every other ball represent an interior node which is
the smallest ball that contains the balls of its children. The corresponding binary tree
diagram is shown in (b).

The interior nodes are used to guide efficient search through the leaf structure. Sibling
regions in a Ball tree are allowed to intersect and they do not need to partition the entire

space.
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2.4.1 Constructing a Ball tree

We’ve used the k-d construction algorithm of Ball tree as given in [22]. It is an off-line
top down construction algorithm. At each stage of the algorithm the leaf balls are split
in to two sets from which Ball trees are recursively built. These trees become the left
and right children of the parent node. To split the balls, we choose a dimension and a
splitting value along this dimension. The left child contains the leaf balls whose center
has a coordinate in the given dimension which is less than the splitting value and the
right child contains those in which it is greater. The dimension to split on is chosen
to be the one in which the balls are most extended and the splitting value is chosen to
be the median. Because median finding is linear in number of samples and there are
logn stages, the whole construction algorithm takes O(dnlogn) [22]. The tree that is
produced by this method is completely balanced but may not adapt itself well to any

hierarchical structure of the leaf balls.

2.4.2 Searching in a Ball tree

In searching the nearest neighbor in a ball tree, a ball “qBall” is maintained whose
attribute “ctr” contains query point and attribute “r” contains the minimum distance
found so far (it is initialized to oo at the start of the algorithm). The internal nodes
whose ball doesn’t intersect with the “qBall” are pruned away. Otherwise we recursively
search that node. In the search algorithm for Ball tree in algorithm 4 the function dist

calculates the distance between two ball centers. The function NNSearch takes a node

parameter “N” which has pointers “It” and “rt” as its children.

2.5 SR-tree

The SR-tree [27] (Sphere/Rectangle-tree) was proposed as an improvement to SS-tree

[20] and R*-tree [28]. While the SS-tree uses bounding sphere and R*-tree uses bound-
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Algorithm 4 Nearest Neighbor Search in ball tree

function NNSearch(N)
if N is a leaf then
D < dist(qBall.ctr, N.ball.ctr)
if D < gBall.r then
qBall.r <+ D
end if
else
LD < dist(N.lt.ball.ctr,qBall.ctr)
RD « dist(N.rt.ball.ctr,qBall.ctr)
if D > gBall.r and RD > qBall.r then
do nothing
else
if LD < RD then
NNSearch (N.It)
if RD < gBall.r then
NNSearch(N.rt)
end if
else
NNSearch (N.rt)
if LD < qBall.r then
NNSearch(N.It)
end if
end if
end if
end if
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ing rectangles to build the tree, a region of the SR-tree is specified by the intersec-
tion of a bounding sphere and a bounding rectangle. Hence, SR-tree captures the ad-
vantages of both of its predecessors. A node of SR-tree has the following structure
N = (S, R, w, child — pointers): a bounding sphere S, a bounding rectangle R, the total
number of points w contained in the subtree of the node and pointers to its children
child-pointers. If the node is a leaf node then it points to entries (or points) p1,pa, --., Pk
where m < k < M. Here, m and M are the minimum and maximum number of entries
in a leaf. If the node is a non-leaf node then it points to the nodes Ny, Ns, ..., N, where
m < k < M as before. The algorithm to build the SR-tree is given in algorithm 5 and
algorithm 6.

The branch-and-bound algorithm that is used for R-tree searching in [26] can also
be used for SR-tree searching with some small modification in the way of computing the
distance from a search point to each region in the SR- tree [27]. It is a depth-first search
with two stages. At first stage it collects the given number of points to make a candidate
set. Secondly, it revises the candidate set with visiting every leaf whose region overlaps

the range of the candidate set. For details about the search method see [26, 27].

2.6 Experiments with Exact NN Algorithms

In this section, we will describe the experimental methodology used in this thesis. We

also describe various kinds of data sets and discuss some of their properties.

2.6.1 Experimental methods

It is hard to find a completely fair method to compare different nearest neighbor (NN)
algorithms. Some algorithms have very large pre-processing overhead. Also, these algo-
rithms use different operations as the principal mean of finding nearest neighbor. One

method of comparing different nearest neighbor algorithms is cpu time which is largely
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Algorithm 5 Insert a point p € R? in SR-tree
function Insert(Point p)
N = ChooseSubTree( root, p); {Returns the subtree where the new node will be
inserted }
split = AddRecord(NN);{ Check if there is any space for new node, otherwise split the
parent node}
while split == true do
split = AdjustTree(V);{If split needed then adjust the tree. Return true if further
split is required }
if split == true then
N « N— > parent; {If split is done then move upward}
end if
end while
End Insert

function ChooseSubTree(Node N, Point p) return Node
while N is not a leaf do
Find the child N’ in N which is the nearest to p;
N« N';
end while
return N

End ChooseSubTree

function AddRecord(Node N, Point p) returns boolean
if N has space for another child then
Insert p as N’s child;
Adjust the parent nodes upto root to accomodate changes;
split < false;
else
split < true;
end if
End AddRecord
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Algorithm 6 Algorithm for adjusting the tree in SR-tree
function AdjustTree(Node N) returns boolean {Called when a split is necessary}
Find the coordinate variance on each dimension from the centroids of its children and
choose the dimension with highest variance for splitting;
Split the Node into two nodes N1 and N2;
if N == root then
Make new root and set its childpointers to N1 and N2;
split < false;
else
if N— > parent has no space due to splitting then
split < true;
else
Adjust the parents upto root to enclose new nodes.
end if
end if
End AdjustTree

implementation dependent. Various authors have used various comparison methods such
as number of disk access, cpu time etc. In our experiments, we have used number of
distance calculations needed as the method of comparison. Though the algorithms we’ve
tried have other overheads, they mainly use the distance calculation between query point

and some of the other points in the data space as one of the basic measurement units.

2.6.2 Data sets

In our thesis, we’ve used several synthetic data sets as well as real life data sets. The

synthetic data sets are:
e Random uniform data in the range [0, 1)¢.
e Random Gaussian data with zero mean and unit standard deviation.

e Mixture of Gaussians where the clusters are well separated. The centers of all the
clusters are also Gaussian distributed with zero mean and unit standard deviation.
The clusters are made well separated by means of generating data points for each

cluster from a Gaussian with low standard deviation (e.g. 0.2 or lower). This value
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of standard deviation doesn’t depend on the dimension of the data set.

e Mixture of Gaussians where the clusters are overlapping and the centers have dis-
tributions same as the previous category. Overlapping clusters can be generated
by generating points for each cluster from Gaussians with high standard devia-
tion (such as 1). As before, this value of standard deviation doesn’t depend on

dimension.
Other than these, the real life data sets that we’ve used are the followings:

e USPS digit data: This data set contains pictures of handwritten digits and has
256 dimensions for each of the data points. There are 7291 data points and 2007
query points in the data set. The values of the data and query points are normalized

between 0 and 1 on each dimension.

e Mnist digit data: This data set also contains pictures of digits. Fach data point
has 784 dimensions. There are around 6000 data points for each digit and a total
of around 60,000 data points. For our experiment, we’ve taken a total of 8000 data
points (800 points from each digit) and 2000 query points (200 from each digit) at

random.

e Feret data: The Feret data set has 3816 face images. Of these, we’ve used 3216
images as the data points and the rest (600) as query points. The raw Feret face
images were passed through a multi-stage normalization process. For information
about how the normalization is done see http:// www.cs.colostate.edu/ evalfacerec/
data/ normalization.html. This normalized data has 18,000 dimensions. This data
set is further modified to exclude those dimensions where the corresponding mask
values in a mask file have intensity less than some threshold value. This pre-
processing reduces the dimensionality of data to 17154. This is the dimension of

the data we’ve worked with.
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e Olivetti Research Laboratory (ORL) faces data: This data set is rather
small. It has 400 face images from which we’ve chosen 360 images as data points
and the rest as query points at random. We took this data set as it is also very

high dimensional. Each data point in this data set has 10304 dimensions.

e ForestCover data: The data set is taken from http:// kdd.ics.uci.edu/ databases/
covertype/ covertype.html. This data set has 54 dimensions. 40 of them are binary
and contain mainly zeros. The rest of the dimensions are normalized so that for each
dimension the minimum value is 0 and the maximum is 1. There are approximately
half a million data points in the set. For our purpose we’ve taken 10000 data points

and 2000 query points at random.

2.7 Experimental Results

In this section, we’ve compared various nearest neighbor techniques w.r.t brute force
(naive nearest) approach. Naive nearest approach needs the distance calculation to be
done for all points in all dimensions. Hence, considering it needs 100 % distance calcula-
tion, we check how other exact algorithms fare with the increase in dimensions.

In these experiments, we’ve mainly used the synthetic data sets. In the figures 2.4
to 2.8, the horizontal axis denotes dimension in log scale and the vertical axis denotes
percent distance calculation needed. The maximum dimension of the data we’ve used
here is 512. Beyond this point, some exact nearest neighbor algorithms need prohibitively
large memory. We’ve used uniform random data set in [0, 1]%, single Gaussian data set
and mixture of 4 and 12 Gaussians (where we’ve varied their standard deviation from 0.2
to 1). When the standard deviation is low the Gaussians are considered more separated
than their higher standard deviation counterpart. We’ve generated 5000 data points and

500 query points for all the data sets in each of the dimension we’ve experimented with.

In each specific dimension, the percentage distance calculation is measured by averaging



CHAPTER 2. EXACT NEAREST NEIGHBOR 21

over 15 data sets.
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Figure 2.4: Comparing various NN algorithms with Random Uniform data (averaged
over 15 data sets for each of the algorithms in the specific dimension). The horizontal
axis denotes dimension of the data (in log scale) and vertical axis denotes the cost (in %
distance calculation w.r.t. naive nearest algorithm) of various NN algorithms.

In figure 2.4 with random uniform data, we see that in low dimension (upto 8) kd-tree
works better than any other methods. Even SR-tree, Ball tree and R-tree work better
than Early Break or Annulus Bound when data are not more than 4 dimension. With
the increse in dimension, the tree based algorithms tend to deteriorate quickly. And in
high dimension, they become more expensive than brute force approach.

Using single Gaussian data with zero mean and unit standard deviation gives approx-
imately the same results. In figure 2.5, as the data points are random Gausssian with no
specific structure (i.e. all the dimensiona are equally important and the data is not lying
in any low dimensional manifold), the tree algorithms can’t do better than the naive

nearest approaches in high dimensions.

From the figures 2.6 to 2.8, we can see that for mixture of Gaussians models:
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Figure 2.5: Comparing various NN algorithms for Single Gaussian data with zero mean
and unit standard deviation (averaged over 15 data sets for each of the algorithms in the
specific dimension). The horizontal axis denotes dimension of the data (in log scale) and
vertical axis denotes the cost (in % distance calculation w.r.t. naive nearest algorithm)
of various NN algorithms.
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Figure 2.6: Comparing various NN algorithms for Mixture of a) 4 Gaussian data b) 12
Gaussian data with 0.2 standard deviation (averaged over 15 data sets for each of the

algorithms in the specific dimension).



CHAPTER 2. EXACT NEAREST NEIGHBOR 24

4 Gaussians :0.4 stddev
120 T T T

100

—©— Naive nearest
—t+— Early Break
—%— Annulus Bound
80| | & KD-tree

c —— R-tree
2 -7 Ball-tree
g —A— SR-tree
°
8
o 60 .
(&)
c
<
0
k=l
S
40+ 4
20 .
0
0 1 2 4 5 6 7 8 9 10
log2(Dimension)
(a) Mixture of 4 Gaussians with 0.4 standard deviation
12 Gaussians :0.4 stddev
100 P P P P N P N
—©—- Naive nearest
—— Early Break
90 —— Annulus Bound T
—&- KD-tree
—— R-tree
80 —7 Ball-tree b
—A— SR-tree
701 B

60

40+

% distance calculation
o
o
T

30

101

o = . . .
0 1 2 3 4 5 6 7 8 9 10
log2(Dimension)

(b) Mixture of 12 Gaussians with 0.4 standard deviation

Figure 2.7: Comparing various NN algorithms for Mixture of a) 4 Gaussian data b) 12
Gaussian data with 0.4 standard deviation (averaged over 15 data sets for each of the
algorithms in the specific dimension).
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Figure 2.8: Comparing various NN algorithms for Mixture of a) 4 Gaussian data b) 12
Gaussian data with 1 standard deviation (averaged over 15 data sets for each of the
algorithms in the specific dimension).
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Figure 2.9: Performance of Different Nearest Neighbor on USPS digit data (256D)

e For well separated clusters (e.g. mixture of Gaussians with 0.2 standard deviation)
and in low dimension, kd-tree is better than SR-tree and other tree structures,
but gets worse than SR-tree in very high dimension (128D or higher). The good
performance of the tree structures is due to the fact that when the standard devi-
ation is small, only a small fraction of the ‘true’ space is filled. Hence, the exact
NN techniques of the tree based algorithms show better performance than naive

nearest approaches.

e For moderately separated clusters (e.g. mixture of Gaussians with 0.4 standard
deviation) kd-tree is still better than SR-tree in low dimension but tends to get
more expensive quicker (in approx. 20D - 30D). The fraction of the ‘true’ space
that is filled up by the data set gets bigger and performance of tree structures

deteriorates.

e For overlapping clusters (e.g. mixture of Gaussians with 1 standard deviation) kd-
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tree works better than all other tree structures. SR-tree behaves badly in higher
standard deviation. In these cases, naive nearest approach (e.g Early Break strat-
egy) performs better than the structural tree approaches because the data is no
longer clustered in small space. Therefore k-d tree and other tree algorithms can’t

work well.

We also tried USPS digit data with different exact nearest neighbor techniques. All
the other real data sets have very high dimensionality which prevents us from applying the
tree based exact nearest neighbor techniques on them. From figure 2.9, we see that in 256
dimensions, the tree structures have very large overhead. The naive nearest approaches
(Early Break and Annulus Bound method) are better than all the specialized tree based
algorithms.

If the data set is completely random with no special structure then in very high
dimension no exact algorithm can be expected to do better than the brute force approach.
As we have discussed in the previous chapter, the space and time complexity becomes
exponential for exact nearest neighbor techniques where the data actually lies in high
dimensions. This phenomenon has been mentioned by many authors, which can be

found in various literartures on this topic [13, 10, 15].

2.8 Curse of Dimensionality

From the above results, we see that dimensionality plays a big part on the efficiency of
the algorithms. The k-d tree, SR-tree, Ball tree and other related data structures work
nicely in small dimension (e.g. in the range of 8-10 dimensions). But these structures
start deteriorating when the dimensionality gets higher. Of course, we know that real life
data can be of many dimensions (e.g. hundreds, even thousands) and using exact nearest
neighbor algorithm on these data would make it computationally very expensive. This

is one of the main motivation of looking on Approrimate Nearest Neighbor rather than



CHAPTER 2. EXACT NEAREST NEIGHBOR 28

an exact one. Also many real life problems don’t actually need to find an exact nearest
neighbor. A good approximation is sometimes sufficient enough to do the job. We will

look at various approximation technique in the next chapter.



Chapter 3

Approximate Nearest Neighbor

It is natural to try improving the computational requirements by only looking for an
approximate nearest neighbor for the query. We define approximate nearest neighbor as
follows:

p € P is an e-approximate nearest neighbor of ¢ if for all p’ € P, we have

d(p,q) < (1+€)d(p', q)

Here d(., .) is the Euclidean distance between two pointsi.e. d(p, q) = \/<Z§i:1(pi - qi)Q)

In previous chapter, we said that “curse of dimensionality” is the biggest problem for
exact nearest neighbor techniques. When the intrinsic dimension of data is very large,
the algorithms for finding exact nearest neighbor become computationally very expensive,
and no better than the brute force approach.

One of the common methods of approximation is to reduce the dimension of the
data somehow (by random projection, PCA etc). But there are several methods for
finding approximate nearest neighbor which do not depend on dimensionality reduction
technique. For our experiments, we've tried two such methods for comparison. One is
Metric Skip Lists [29] proposed by David Karger and Matthias Ruhl which can answer
nearest neighbor queries in O(logn) time and other is an e-approximate algorithm which

has a near linear storage and a query time that improves asymptotically on linear search

29
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in all dimensions by Jon M. Kleinberg [15]. Following is a brief description of both the

methods:

3.1 Metric Skip Lists

Metric skip list is a nearest neighbor algorithm designed for general metric spaces. These
metrics must have an underlying property that they are growth-constrained. By growth-
constrained we mean that for any point p and number r, the ratio between number of
points in balls (centered at p) of radius 2r and r is bounded by a constant which is
referred as expansion rate, c.

The algorithm and the data structure can be best understood from [29]. In this thesis,
we’ve used the algorithm with Euclidean metrics, and the data sets are believed to lie on
a submanifold of R¢.

According to the terminology used in [29], the concept of growth constrained metrics
is the following: Given a metric space M' = (M,d) (here M is the space where the
data live and d is a distance function on that space which is symmetric and satisfies the
triangle inequality property), and a subset S C M of n points in the space, and let By(r)
:= {s € S| d(p,s) < r} be the ball of radius r around a point p in S, we say that S has

a (p, c)-expansion iff for all points p € M and r > 0
1Byp(r)| = p=>|By(2r)| < ¢+ |By(r)|

So, the expansion property requires that when a ball grows around any point in M,
points from S appears in the space at a constant rate.

From the triangle inequality property we can deduce that if d(p, q) < r, then By(r) C
B,(2r) C B,(4r) [29]. The basis of Metric Skip list algorithm lies on the following
Sampling Lemma which is quoted from [29].

Sampling Lemma:

Let M'" = (M, d) be the sampling space, and S C M be a subset of size n with (p, ¢)
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expansion. Then for all p,q € S and r > d(p, q) with |B,(r/2)| > p, the following is true:
When selecting 3¢® points in B,(2r) uniformly at random, with probability at least 9/10,
one of these points will lie in B,(r/2).

The metric skip list follows from the sampling paradigm. Below we discuss the con-

struction of the data structure of this algorithm.

3.1.1 Data Structure

Let S be the sample space. The points in the space are randomly ordered and given
that ordering the construction of the data structure will be deterministic. Let S =
{51, S2, ..., Sn.} be the random ordering and let s;;; be the successor of s; and s; be the
successor of s,. So, we can imagine that the points are arranged on a circle. For each
s; € S we have sets of pre-chosen samples. The data structure simply consists of these
sets of samples. These sets are called finger-lists. The following definition from Karger
et al. [29] states how the finger lists are created for each element s; in S.

“For r > 0, the radius r finger list for s;, denoted F}(s;), contains the indices of first
24¢3 elements after s; in the ordering that have a distance < r. If we reach the end of
ordering we wrap around at beginning. And if there are less than 24¢® elements of this
kind in S, then F(s;) just contains all of them”.

In the next section we’ll give an off-line construction of this data structure and describe

how searching is performed with this data structure.

3.1.2 Off-line Construction

For off-line construction of the data structure lets suppose we truncate all the finger lists
F,(s;) so that they do not wrap around at the end of ordering. Rather they only consists
of elements after s;. This structure would still support nearest neighbor searches provided
we start the search at si, the beginning of the ordering.

The construction starts with an empty data structure and then repeatedly adds
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SnsSn—1,- -, 51 to the beginning of the previously constructed data structure. By this
way, when we insert s; in the data structure, we have to compute the finger lists of s;
only. The finger lists of already added elements remain unchanged because they can’t
contain s; in this way. At any iteration, the data structure maintains the characteristics
of a metric skip list on the subset of items {s;11, Siy2, ) Sn}-

For construction of the finger-list of new element s;, we start search at s;;1, the
successor of s; and we keep 24¢? closest elements seen so far. When we find a new
element which is closer to s;, we drop the element which is furthest from s; among all the
elements in the set. We keep on searching for closer elements until we’ve done checking
all the elements up to s,. We then add those dropped elements at the end of the list.
This yields all the elements of s;’s finger-lists (for proof see [29]). The algorithm for finger

list construction of any element is given in algorithm 7 below.

3.1.3 Searching

To find the nearest neighbor for the query point ¢, we start search at the beginning of
the ordering (at s;), and continue until we finish searching s,,. We initialize s; to be the
nearest neighbor of the query point q. Then in each iteration, we measure the distance r
between ¢ and the current element s;. We check the finger list of Fy,(s;) to see if there are
other elements which are nearer than the current minimum or which halves the distance
between ¢ and s;. If there are multiple elements with any of these properties then we
take the one which has the smallest index among them and update the nearest point
accordingly. Otherwise, if we can’t find any element then we simply choose the element
which has the maximum index in F,(s;) and iterate again.

This algorithm accesses only O(logn) finger lists with high probability (for proof see
[29]). The unbounded number of possible values of r prevents us from storing the finger
lists indexed by r. So, we store the finger lists of an element in an array ordered by r.

Therefore, the straight forward approach to find the correct list is to perform a binary
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Algorithm 7 Creating Finger Lists for all entries

Require: ¢ > 0
fori=1:n—-1do
start < i + 1 {the finger list of i starts from the i+1th point}
end < i + 24 x ¢® {1st 24 x ¢ points after i}
if end > n then
end < n {Not wrapping around}
end if
j+1
for j = start : end do
FR;; < d(s;, sj) {distance between ith and jth point}
F,j < s; {store the point in the finger array }
end for
max R < maximum value of the F'R array
j+0
for k=end+1:ndo
if d(s;, sx) < mazR then
{kth element closer}

jei+
fj < element of F' that has mazR
P« (F\{f;}) U {sk}
end if
end for
F«— FU{f, fa -, [}
end for

output F
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search on r in the array. This leads to an additional cost of O(loglogn) per finger list
access. Thus, the running time of this algorithm is O(log n loglogn) with high probability
(see [29] for details).

The algorithm for nearest neighbor search with metric skip lists is shown in algorithm

Algorithm 8 Finding Nearset Neighbor in Growth Restricted Metrics
i < 1{i is the current position}
m <— 1{m is minimum so far}
mindist < d(Sm, q);
ar_d_q(1..n) < 0 {contains distance between ¢ and all the points}
while : < n do
r < d(s;,q) {distance between ¢ and ith point}
k <— number of points in the finger list of ¢+ within radius 2r
for j=1:kdo
jj < jth finger of 7th point
if ar_d_q(jj) == 0 then
dist < ar_d_q(jj) < d(sj;,q) {store distance between ¢ and jj}
else
dist < ar_d_q(jj) {retrieve distance between ¢ and jj from the array}
end if
if dist < mindist or dist < r/2 then
found + true;
Store the point 77 in an array ar as it is closer to ¢
end if
end for
if found == true then
i + min(ar) {i becomes the smallest index amog the points who are closer to ¢}
if d(s;,q) < d(spm,q) then
m<—1
end if
else
t < maximum index in the fingerlist of ¢ within radius 2r
end if
end while
output s,,
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Figure 3.1: Comparing Metric Skip List algorithm with Early Break approach for USPS
digit data. 1-NN indicates the approx. answer matches with the exact NN while 5-NN
indicates it matches with any of the 5 exact NN.

3.1.4 Experimental Results

The experiments are run over various real life data sets (e.g. USPS digit data, Mnist
digit data, Feret images, Forest Cover data, Orl faces data) and various synthetic data
sets (random uniform data, single Gaussian data, mixture of Gaussians data). All the
synthetic data sets have 8000 data points and 2000 query points. While running the
experiments we’ve varied the assumed expansion rate, ¢. With the increase in ¢, the
number of fingers in a finger list also increases, which in turn plays a positive role while
finding nearest neighbor for a query point in the expense of more calculation. For each
of the data sets, we’ve checked whether the approximate answer returned by the query
matches with the exact NN. In the figures, it is termed as 1-NN (shown as straight line).
Also, we’ve checked if the result matches with any of the 5 exact NN (termed 5-NN and

shown as broken lines in the figures).

The figures are compared with the distance calculation needed for Early Break ap-
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Distance Calculation Vs Accuracy

for various c values(expansion rate)
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Figure 3.2: Comparing Metric Skip List algorithm with Early Break approach for Mnist
digit data. 1-NN indicates the approx. answer matches with the exact NN while 5-NN
indicates it matches with any of the 5 exact NN.
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Figure 3.3: Comparing Metric Skip List algorithm with Early Break approach for Feret
digit data. 1-NN indicates the approx. answer matches with the exact NN while 5-NN
indicates it matches with any of the 5 exact NN.
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Distance Calculation Vs Accuracy
for various c values(expansion rate)
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Figure 3.4: Comparing Metric Skip List algorithm with Early Break approach for Orl
Face data. 1-NN indicates the approx. answer matches with the exact NN while 5-NN
indicates it matches with any of the 5 exact NN.
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Figure 3.5: Comparing Metric Skip List algorithm with Early Break approach for Forest
Cover data. 1-NN indicates the approx. answer matches with the exact NN while 5-NN
indicates it matches with any of the 5 exact NN.
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proach. It is shown as a vertical straight line which clearly shows which portion of the
approximate algorithms are better than the Early Break approach. Our actual interest
are on the left side of the Early Break’s distance calculation line which maximizes the ac-
curacy. In Figures 3.1, 3.2, 3.3 the approximate nearest neighbor found by the algorithm
are more than 90% accurate. If we imposed the requirement and check whether the an-
swer match with any of the first 5 exact nearest neighbors then the accuracy is more than
98%. That means the approximate answer is close to the vicinity of the actual nearest
neighbor, which is sufficient enough for some practical purposes. The Forest Cover data
in figure 3.5 behaves badly because of the nature of the data which has binary values
in most of its dimensions. As a result, Early Break strategy works best in these kind of

data (Early Break approach is approximately 4.5% of brute force approach).

For synthetic data sets, We have used 256 dimensional and 1024 dimensional data
sets. The random uniform data are in the range [0,1]%. From figure 3.6, we find that
for this type of data, getting good accuracy with 1-NN is very difficult (it is roughly
below 90%), but considering 5-NN we can get fairly good accuracy (close to 100%) with
lesser cost than Early Break. These data sets have expansion rate 2¢ which makes them

inappropriate for metric skip list algorithm as they are not growth constrained.

Therefore, we've generated few synthetic data sets which are originally high dimen-
sional (256D) but lie in various low dimensional manifold. The data sets are generated
as follows: We randomly (uniform) distributed first 2 dimensions in the range [0,1] and
made all other 254 dimensions to be Gaussian distributed with zero mean and unit stan-
dard deviation multiplied by various multiplying factors. Then we rotate the data using
a random d x d matrix whose entries are Gaussian with zero mean and unit standard
deviation. In figure 3.7(a), if we use very small multiplying factor (e.g. 0.001) to multiply
the Gaussian distribution of the other 254 dimensions then the value of these dimensions
become very negligble which makes this data set virtually 2-dimensional. This data set

has expanson rate 22 = 4 and is growth restricted. As we can see in the figure, metric
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Figure 3.6: Comparing Metric Skip List algorithm with Early Break approach for Random
Uniform ([0, 1]¢) data (a) with 256D (b) with 1024D for various expansion rates.
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Figure 3.7: Comparing Metric Skip List algorithm with Early Break approach for 256D
data where 2 of the dimensions are uniform random in [0,1] and others are Gaussian
distributed (mean 0,variance 1) multipled by (a) 0.001. Data set lives in 2 dimension.
(b) 0.01. Data set still lives in low dimension but greater than 2 dimension. (c) 0.1.
Data set lives in bigger dimension. All 3 data sets are then rotated using a 256 x 256
dimensional random Gaussian matrix (mean 0, variance 1).
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Figure 3.8: Comparing Metric Skip List algorithm with Early Break approach for Single
Gaussian (mean 0, std. deviation 1) data (a) with 256D (b) with 1024D for various
expansion rates.
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Figure 3.9: Comparing Metric Skip List algorithm with Early Break approach for Mixture
of 10 moderately Separated Gaussian Data (a) with 256D (b) with 1024D for various
expansion rates.
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skip list algorithm has very good accuracy rate in low ¢ values. The reason the distance
calculation cost is high because the search point s; can’t move faster towards the query
point (¢). As the data set is very dense, s; may find multiple points that are closer to the
g than itself and according to the algorithm it chooses the one with the smallest index
7 as the next search point. As a result, it moves towards the query point very slowly.

Early Break also performs reasonably well in this data set.

In figure 3.7(b), we added noise in the data set by setting the multiplying factor to be
0.01. The data set still lives in low dimension so the accuracy of metric skip list remains
high. The distance calculation cost gets lower because the algorithm doesn’t suffer from
the previous problem of not moving faster towards the query point. Early Break approach
also starts deteriorating in this data set. If we go on increasing the multiplying factor
then the cost of metric skip list (to attain reasonably good accuracy) and Early break
both get higher, as we can see from figure 3.7(c) where we set the multiplying factor to

be 0.1.

The single Gaussian data (with zero mean and unit standard deviation) sets like
random uniform data, also don’t exhibit good accuracy with 1-NN but provide nearly
100% accuarcy with 5-NN (see figure 3.8). The figure is very similar to the one for

random uniform data set (figure 3.6).

The mixture of 10 moderately well separated Gaussian data is generated as the follow-
ing: the cluster centers are Gaussian distributed with zero mean and 1 standard deviation
and for each of the clusters the data is generated with low (0.25) standard deviation so
they are grouped together. From figure 3.9, we see that this data set performs much
better than the uniform random and single Gaussian data sets. With both 1-NN and

5-NN, we can get 100% accuracy with much lesser cost than Early Break.
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3.2 Algorithm by Kleinberg

Jon M. Kleinberg presented two algorithms for nearest neighbor search in high-dimension
in [15]. The algorithms are based on a method for combining randomly chosen one-

dimensional projections of the underlying point set. The algorithms are the followings:

1. An algorithm for finding e-approximate nearest neighbors with a query time of

O(()(dlog? d)(d + logn)) but storage of O(nlogd)*.

2. An e-approximate nearest neighbor algorithm with near linear storage and a query

time that improves asymptotically on linear search in all dimensions.

We have tried the second approach for our experiment. Because the pre-processing
time and storage requirements for the first approach is prohibitively high, whereas the
second approach has near linear storage (though the query time of the second approach
is little higher than the first). The second approach returns an e-approximate nearest
neighbor with probability 1 — § and has a query time O((% logé=")(n + dlog®n)), pre-
processing time O*(d?n), and storage O*(dn) '. One important thing about the algorithm
is, when d = O(n/log® n) then only we can answer a query with a net constant number of
operations per point, rather than the d operations per point required by the brute force

approach.

3.2.1 Data Structure

For the data structure we need the following constants:
® 7, is chosen so that €7 <1+ ¢
e ¢, is chosen s.t. e 8117 < i(%é)l/log"

. _ 1 2
® ¢, is chosen s.t. e”81%2¢ <1

Lthe O*() also suppresses terms that are polynomial in logn
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d

. 1 7.2
e ¢ is chosen s.t. e”&%2¢ < %

: c1log®n % 1
® 71 is chosen s.t. (1 — 228")le’n > 1 — 24

1 3
e c3 is chosen s.t. (1 — log_:l,’n)cslog n< g

Set €y = 107;” and define

1
L= f(éeo, §) = O(dlog® n(log® d + log dloglogn))

where the function f(.,.) is defined as in [15].

We choose a set V of L vectors vy, vs, ..., vr,. Here V C S where S9! C R? denote
the unit (d — 1) sphere {v € R : ||v|| = 1}. The term ||v|| is the norm of vector v and
defined as ||v]| = /v - v. The data structure is simply an L x n matrix M (here n is the

numper of points in the set P). The entry M|, j] is set equal to v; - p;.

3.2.2 Processing a query

Let ¢ € R? be a query point and let p* be a point which minimizes the distance d(p, q)
over all p € P. The purpose of the algorithm is to output a point in the set, Z = {p; €
P :d(pi,q) < (1 + €)d(p*, q)} with probability 1 — 4.

According to the terminology used by Kleinberg [15], if p;,p; € P and v, € V, we say
p; dominates p; with respect to vy if |vg - p; — vg - ¢| < |vk - pj — vk - ¢l

Now, for a subset V' of V', we say that p; dominates p; with respect to V' if p; domi-
nates p; for more than half of the vectors in V'. Kleinberg referred it as V’'-comparison
of p; and p;.

For simplicity let the number of points n be 2™. With these n points, we can construct
a complete binary tree 7" of height m. Also let T} be the height of the tree at height
h < m. The leaves are situated at height 0.

Let L1 = ¢ log3n where ¢; is a constant defined earlier. A multiset I' of L vectors

are drawn uniformly at random with replacement from V. Then the inner product with
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g is computed for each v € T'. Assuming (for simplicity) L, is a power of 2, we write
b=loglL;.

The algorithm has 2 parts which are described below.

Part A:

A sub-multiset ', of ' of size ¢}, + coh is chosen for each node z at height h < b.

By assumption 7" has n leaves. We randomly assign each point p € P to a leaf of

tree T'.

From the leaves upto height b, for each node z, we make I', comparisons of the
points assigned to its two children p; and p;. If p; dominates p; with respect to I'

then we assign p; to . Otherwise we assign p; to x.

From height b upto root we perform the same procedure using I'-comparisons. Let

pa denote the point assigned to the root.
Part B:
e We choose randomly a set P’ C P of size c;log® n.

e Then we compute the distance from ¢ to each p € P'. Let pg be the point which

has the smallest distance from the query point gq.

From p4 and pg, we determine which one is closer to ¢, and return that point as the

answer to the query.

3.2.3 Modification of the Algorithm

When implementing the above algorithm, we haven’t used the constants (which depend
on €, 6 and n) that are defined by Kleinberg [15] because the values of the constants
are very large for an actual implementation of this method. The constants are used to

find the values of L - the number of vectors in V', Ly - the number of vectors in I'; and
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the number of vectors in I', which is a sub-multiset of I'. In our implementation, we’ve
used L; to be 90% of L and the number of vectors in sub-multiset I', to be 75% of L
as arbitrary constants. Though these values are arbitrary, we have chosen them high
enough and close to L so that we get better performance from the algorithm. We then

run the algorithm for various values of L.

Algorithm 9 An e-approximate nearest neighbor algorithm by Kleinberg
{ Part A}
V < L random vectors each of length d s.t. {v € V : ||v|| =1}
for + = 1:L do
for j = 1:n do
M;; < v; - p; {L x n matrix which is our preprocessed data structure}
end for
end for
I' + random subset of L; € L vectors from V
for :=1:1; do
vg; < v; - q {for each v; € T'}
end for
Assign each point in P to a distinct leaf of T{T is a binary tree of height m = [logn|}
while h < height of tree do
if h <loglL,; then
I', « random sub multiset of "
else
I',«7T
end if
From leaf to root, assign p € P to x € T by I',-comparison of the children of z and
assigning the winner to x
end while
pa < point assigned to the root

{Part B}
Choose a random set P’ C P of size O(log® n)
Find the point in P" which has got the minimum distance from gq.
Set pp to be this point.
if py is closer to ¢ than pp then
set answer to py
else

set answer to pp
end if
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3.2.4 Experimental results

We have used the USPS digit, Mnist digit, Feret images, Orl face and Forest Cover data
sets and some synthetic datas sets to test the algorithm’s performance. The synthetic data
sets are uniform random, single Gaussian and mixture of 10 moderately well separated
Gaussian data sets. The generation of these synthetic data sets are described in previous
section and in Chapter 2. All the synthetic data sets have 8000 data points and 2000
query points.

Kleinberg’s algorithm uses matrix multiplication as its basic measurement unit, which
is roughly the same as distance calculation unit. Other than matrix multiplication, the
algorithm also uses large number of boolean comparisons between the points as the other
measurement unit.

From the figures 3.10 to 3.12 and figure 3.14, we can see that though it is hard to
get significant accuracy w.r.t. to 1-NN (i.e. whether the result of the algorithm matches
with the exact nearest neighbor), the output of the algorithm shows a good accuracy
w.r.t 5-NN (i.e. whether the approximate result matches with any of the 5 exact nearest
neighbor). The Forest Cover data set in figure 3.13 suffers because of its bad intrinsic
structure as before.

If we consider only the query time of the algorithm, it shows significant improvement
in case of number of calculation needed to be done. But there is a large pre-processing
factor that needed to be considered. The pre-processing is of the order O(Ldn). But
because of large constant factors and the high value of L, in practice this pre-processing
cost is very expensive. Also, as we’ve said earlier the algorithm has considerable amount
of boolean comparisons which is also a factor in the query time that we didn’t include.

From the figure 3.10 to 3.12 and 3.14, we can see that the query time needed to find
reasonable accuracy w.r.t 5-NN is less than Early Break stategy. But including the pre
processing time shows that cost is far beyond the calculation required for Early Break.

Forest data set in figure 3.13, is nowhere near any acceptable accuracy because of the
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Figure 3.10: Comparing Kleinberg algorithm with Early Break for USPS Digit data.
1-NN indicates the approx. answer matches with the exact NN while 5-NN indicates it
matches with any of the 5 exact NN. The upper figure compares 1-NN and 5-NN with
Early Break. The lower figure compares 1-NN without preprocessing and 1-NN with
preprocessing with Early Break.
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Figure 3.11: Comparing Kleinberg algorithm with Early Break for Mnist Digit data.
The upper figure compares 1-NN and 5-NN with Early Break. The lower figure compares
1-NN without preprocessing and 1-NN with preprocessing with Early Break.
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Figure 3.12: Comparing Kleinberg algorithm with Early Break for Feret image data.
The upper figure compares 1-NN and 5-NN with Early Break. The lower figure compares
1-NN without preprocessing and 1-NN with preprocessing with Early Break.
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Figure 3.13: Comparing Kleinberg algorithm with Early Break for Forest Cover data.
The upper figure compares 1-NN and 5-NN with Early Break. The lower figure compares
1-NN without preprocessing and 1-NN with preprocessing with Early Break.
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Figure 3.14: Comparing Kleinberg algorithm with Early Break for Orl Face data. The
upper figure compares 1-NN and 5-NN with Early Break. The lower figure compares
1-NN without preprocessing and 1-NN with preprocessing with Early Break.

reasons earlier stated.

For synthetic data sets, We have used 256 and 1024 dimensional data sets. From
figure 3.15 to figure 3.17, we can see that we can’t get significant accuracy rate w.r.t
1-NN. We can get higher accuracy rate with 5-NN for 256 dimensional data sets, but the
accuracy is not that significant and also the cost of the query surpasses that of Early
Break. For 1024 dimensional data sets it is hard to achieve good accuracy rate even with
5-NN (see figure 3.15(b), 3.16(b),3.17(b)). Moreover, adding pre-processing time with it

make the computational cost really high as before.

The Kleinberg algorithm can answer a query with a net constant number of operations
per point when d = O(n/log®n). The data sets we've considered here have d >>
n/log®n, which is the main reason for such inaccurate results. So, when d is large we

need n to be large enough to take advantage of this algorithm.
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Figure 3.15: Comparing Kleinberg algorithm with Early Break for Random Uniform Data
(a) with 256D (b) with 1024D for various L values.
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Figure 3.16: Comparing Kleinberg algorithm with Early Break for Single Gaussian Data
(a) with 256D (b) with 1024D for various L values.
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3.3 Other methods

There are several other nearest neighbor search algorithms that we haven’t covered.
Robert Kraugthgamer and James Lee have given a deterministic data structure for main-
taining a set S of points in a general metric space, while supporting nearest neighbor
queries [30].

Another very recent algorithm for finding nearest neighbor is “Cover Tree” [31]. It is a
tree data structure for fast nearest neighbor operations in general n-point metric spaces.
Cover tree can be used both for exact and approximate NN search.

These data structures are fairly new and we haven’t studied them in detail.



Chapter 4

Multiple Random Projection

Technique

In this chapter we’ll discuss in detail our technique of finding nearest neighbors. First
we’ll talk about different dimensionality reduction techniques then we’ll move to random
projection (RP): what is random projection, how randomization is done and its charac-
teristics. Next we’ll describe how the multiple random projection (MRP) technique fits
in our approach of finding nearest neighbor. Lastly, we’ll show some experimental results

using multiple random projection technique on various data sets.

4.1 Dimensionality Reduction

To avoid the “curse of dimensionality”, it is natural to think about reducing the dimension
to a certain degree where its effect is small (it can’t be eliminated totally). But at the
same time, we’ll need to be careful about how much information we are sacrificing. One
way of performing dimensionality reduction is to project data into a lower dimensional
linear subspace that captures as much of the variation of the data as possible. The most
widely used technique to do this is Principal Component Analysis (PCA). But PCA is

computationally quite expensive for high dimensional data sets. It needs to compute a

26
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data covariance matrix which is d x d for d-dimensional data. Also, PCA is not guaranteed
to give the best results. Thus for NN, it is desirable to find a computationally simple
method of dimensionality reduction technique that does not cause data to be distorted
significantly.

In random projection (RP), the original high dimensional data is projected into a
lower dimensional subspace using a random matrix (each entry of this random matrix
is Gaussian distributed). Random projection is computationally efficient, yet sufficiently
accurate method for dimensionality reduction of high dimensional data sets.

Before continuing with RP, in the remainder of this section, we’ll briefly discuss some
alternative methods of dimensionality reduction. The alternative methods we will look at

are PCA, Singular Value Decomposition (SVD) and Discrete Cosine Transform (DCT).

4.1.1 PCA

Principal Component Analysis (PCA) is a powerful tool in analyzing data. It is a way of
identifying patterns in data, and expressing the data to highlight their similarities and
differences. Technically, it finds the k-dimensional linear subspace of R? that captures
the variation of the data as much as possible.
Specifically, given the data set X = {1, x,.....,x, } it finds the linear projection to
R for which
n
2
> lzf =]
i=1
is maximized. Here z} is the projection of point z; and p* is the mean of the projected
data.
PCA can be viewed as a procedure of finding projections of high dimensional data.
It can solve an optimization problem exactly and efficiently, via eigenvalue computation.
The eigenvalue decomposition of the data covariance matrix is computed as E{(X X*)/n}
= QAQ"T where X, is the original set of n d-dimensional observation and the columns

of matrix @) are the eigenvectors of the data covariance matrix F{(XX”)/n} and A is a
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diagonal matrix containing the respective eigenvalues.
For reducing dimensionality, the data is projected into a subspace spanned by the

most important eigenvectors :

XPC’A — QgX

where @) is a d X k matrix that contains the &k eigenvectors corresponding to the k largest
eigenvalues [44]. Unfortunately, the eigenvalue decomposition of the data covariance
matrix whose size is d X d for d-dimensional data is very expensive to compute. The
running time of PCA is polynomial, but is rather high. It is O(d?*n) + O(d®) [32] for
d-dimensional data. Actually, Roweis [33], Tipping and Bishop [34] have shown that for
a large matrix there exists computationally less expensive methods for finding only few

eigenvectors and eigenvalues.

4.1.2 SVD

A very powerful set of techniques dealing with sets of equations or matrices that are either
singular or numerically very close to singular is the so-called singular value decomposition
(SVD). In SVD, any matrix Xgx, can be decomposed into X = USV7T where U and V
are orthogonal matrices that contain the left and right singular vectors of X, and the
diagonal of S contains the singular values of X. Reducing the dimensionality using SVD
can be done by projecting the data into the subspace spanned by the left singular vectors

corresponding to the k£ largest singular values:
XP =Uf X

where d x k matrix Uy contains these k singular vectors [44]. Like PCA, SVD is also
computationally expensive. But for sparse data matrices SVD is useful because there
exists numerical routines such as power or Lanczos method that are more efficient [45].

For a sparse matrix Xy, with about ¢ nonzero entries, the computational complexity of

SVD is of order O(dcn) [35].
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One of the most prominent use of sparse SVD is Latent Semantic Indexing [35, 36].
LSI is an information retrieval technique based on the spectral analysis of the term-
document matrix. It is a dimensionality reduction method for text-document data. Using
LSI, the document data is presented in a lower-dimensional “topic” space: the documents
are characterized by some underlying (latent, hidden) concepts referred to by the terms.

Also, random projection can be used as a way of speeding up LSI [35].

4.1.3 DCT

The discrete cosine transform (DCT) is a Fourier-related transform similar to the discrete
Fourier transform (DFT), but using only real numbers. It is equivalent to a DFT of
roughly twice the length, operating on real data with even symmetry (since the Fourier
transform of a real and even function is real and even), where in some variants the input

and/or output data are shifted by half a sample.

DCT is a method mainly used for image compression. Hence it can also be used as a
dimensionality reduction technique. DCT is computationally less expensive than PCA,
but its performance approaches that of PCA. In DCT, the distortion of image occurs at
highest frequencies only and human eye tends to neglect these as noise. Dimensionality
reduction in DCT can be done as follows: An image is transformed into DCT space and in
the inverse transform, the transform co-efficient corresponding to the highest frequencies

are discarded to reduce the dimension [37, 38].

The computation of DCT doesn’t depend on data matrix, contrast to PCA that needs
eigenvalue decomposition of data covariance matrix. For this reason, DCT is cheaper to
compute. The computational complexity of DCT is of the order O(dnlog,(dn)) for a

data matrix with d-dimension and n data points [38].
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4.2 Random Projection

In Random Projection(RP), the original d-dimensional data is projected into k-dimensional
subspace (k << d) using a random k x d matrix M, whose entries are Gaussian. The key
idea of random mapping arises from the Johnson-Lindenstrauss (JL) lemma [43], which

is given below:

4.2.1 Johnson-Lindenstrauss (JL) Lemma

The JL lemma states that if points in a vector space are projected to a random subspace
of suitably high dimension, then the pair-wise Euclidean distances between the points
are approximately preserved. To be more precise, any n point set in the Euclidean space
can be embedded in a space of O(logn/e?) without distorting the distances between any
pair of points by more than a factor of (1 £+ ¢€) for any 0 < e < 1 [39].

When a unit vector is projected into a random k£ dimensional subspace, its squared
length is concentrated around its mean which is k/d, and is not distorted by more than
(1+ €) with probability O(1/n?). Normalizing this and applying the trivial union bound
then gives the lemma. For a detailed proof of this lemma see [39, 40].

According to JL. lemma, points in higher dimensional spaces can still retain an approx-
imation level of separation when they are embedded (or projected) in lower dimensional
space. The idea of random embedding of points in lower dimensional space stems from

this lemma.

4.2.2 How randomization is done

A random projection from d dimension to k£ dimension is represented by k x d matrix M
and it doesn’t depend on the data. The following method is used to generate a random

projection:

1. Set each entry of the matrix M to an i.i.d. N(0,1) value, i.e. let M = randn(k,d).
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2. Let X be the original data matrix with dimension d X n where n is the number of

data points and d is the actual dimension. Then X&

= MkXdden will give the

matrix of the projected points.

4.2.3 Characteristics of RP

Random projection is computationally very simple. Forming the random matrix M and
projecting the data Xy, into & dimension is of order O(dkn). If the data matrix is
sparse with ¢ non-zero entries per data point then the complexity is of the order O(ckn).

There are different ways of making the random matrix M. To have unitary projec-
tion, we have to make the k rows of the matrix M orthogonal (for example, by using
Gram-Schmidt algorithm). Unfortunately, orthogonalizing M is computationally quite
expensive. A result proposed by Hect-Nielsen [41] state that in high dimension, there
exists much larger number of almost orthogonal than orthogonal directions. So, orthogo-
nalizing M is not necessary for random projection. In some variants of random projection,
the k£ rows of the random matrix M is normalized to have unit length.

In Euclidean distance measure, we write the original distance between two data vec-
tors, x1 and 5 as ||z; — z3]|. After projecting the data in random space we can approx-
imate the distance between these vectors by the scaled distance measure in the reduced

space:
VAa/k|| Mz, — Mxs||

where d is the original and k is the reduced dimensionality of the data set. The scaling
term /d/k takes into account the reduction in dimensionality. According to Johnson-
Lindenstrauss lemma, the expected norm of a projection of a unit vector into a random
subspace through the origin is \/m [43].

Another point of interest is the entries in the random matrix M. In our implementa-
tion, each entry m;; is normally distributed. But this need not be the case. Achlioptas [42]

has shown that a much simpler distribution will work well and can replace the Gaussian
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distribution. The distribution according to Achlioptas is:

+1 with probability

Wi O

m;; = V3-8 0 with probability

—1 with probability

=

Practically, all zero mean, unit variance distributions of m;; would give a mapping that
will satisfy Johnson-Lindenstrauss lemma.

Random projection preserves the similiraties of the data vectors well even when the
data is projected to moderate numbers of dimensions and the projection is fast to com-
pute. For some comparisons between random projection and other dimensionality reduc-
tion methods see [11, 44].

In the following section, we’ll discuss how projecting randomly multiple times assists

in finding nearest neighbor (NN) in high dimension quickly with a high accuracy.

4.3 Multiple Random Projections (MRP) in finding
Nearest Neighbor

From the previous discussions of RP, it can be realized that random projections are faster
yet useful way of reducing dimensions. Taking a random projection of a high dimensional
data with dimension d to a much smaller dimension £, obviously makes the computation
much less but finding the nearest neighbor (NN) with that small amount of information is
not always possible (because in Euclidean distance every dimension is equally important
and independent of others). Figure 4.1 depict this picture. In this figure, the query
point ¢ is nearer to p; than p;. But after taking a single random projection of these
points, p; becomes closer to ¢ and thus we may falsely select it as the nearest neighbor
of g. If we take single random projection from d to k (d >> k) then there exists high
probability of picking false points as the nearest neighbors. Also the figures from 4.2

to 4.4 reflect this behaviour. The data sets used here are all 256 dimensional. In these
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K

Figure 4.1: False Nearest Neighbor in single random projection. The point p; is closer
to the query point ¢ than p;. But in this projection p; will be wrongly selected as the
nearest neighbor.

figures, we’ve projected the data into various low dimensional subspace (less than the
orginal dimension) and computed NN in that projection. From the figures, it is clear
that single random projection is very much susceptible to error and it can’t yield good

accuracy rate in nearest neighbor search.

So one natural idea is to get more information from the projected data, and for this
we need more projections. If we take enough random projections then there is a good
probability that not all of them will give us false results. For each of the projections in
low dimension, we calculate the exact NN from the projected data set (this can be fast
since exact methods like k-d tree, SR-tree etc works well in low dimension). This exact
NN may not be actual NN but it may be close to actual NN. If we take J projections then
we’ll have at most J exact NN as candidates of the actual answer. When we have exact
NN for all the projections we hope that we’ve got better chance of finding the actual NN

in them or at least these points may be close to the actual NN.

But sometimes taking only one NN per projection is not adequate. There is chance
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Cost Vs Accuracy in Single Random Projection
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Figure 4.2: Single Random Projection - USPS Digit Data (256D). The horizontal axis
denotes cost (in % distance calculation of Naive NN) and vertical axis denotes matching

percentage with exact NN.
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Cost Vs Accuracy in Single Random Projection
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Figure 4.4: Single Random Projection - Single Gaussian Data (256D) with zero mean,
standard deviation 1. The horizontal axis denotes cost (in % distance calculation of Naive
NN) and vertical axis denotes matching percentage with 1-NN.

that we’ll miss the actual NN in them. So, to be more robust, when we are finding NN
in low dimensions we take first K-NN i.e. for each of the low dimensional projections we
find the closest K-NN. We take the union of these to be the candidate set C of exact
NN. If we have J projections and for each of them we have K-NN, then the candidate
set will consist at most J x K points (some of them may appear multiple times). After
that, we find the nearest neighbor of the query point ¢ from only those points in C. In
searching nearest neighbor in the set C', we use naive nearest with Early Break in original
i.e. in all d dimension. As there are only few candidate points, which are much more less
than actual data points, the computational cost of finding NN in actual high dimension

among those points is not that much.

Choosing which exact NN technique should be used in low dimensional projections is
another question. There are lots of efficient techniques for finding NN in low dimension
and from our discussions in Chapter 2, we know that in lower dimension, k-d tree is the

least expensive method than all other tree (SR-tree, R-tree, Ball tree) methods as well
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as naive nearest methods. So, to make use of its high performance in lower dimension,
we have used k-d tree as the exact NN technique in reduced dimension.

The pseudo-code of finding approx. NN in MRP technique is given in Algorithm 10.

Algorithm 10 finding approx. NN in MRP technique for query point ¢
Let the reduced dimension be k£ and original dimension be d

{Pre-Processing Stage}
for each of the J projections do
Make a Random Matrix M}/ , with each entry m;; being set to an i.i.d. N(0,1)
value, i.e. let M = randn(k,d).
Get the reduced data set X[, = M}, ;Xaxn
Build k-d tree on the data set X".
end for
{Query Stage}
for each of the J projections do
Project the query point g into k£ dimension using the random matrix M7 constructed
before.
Call k-d tree and return K-NN for the query point ¢ using projected data set X
Store those K points as candidate points in a set C
end for
Take only the unique points in C' and find the nearest point of ¢ among those points
using naive nearest method. Let p™%F be the closest point of ¢ in that set.

Output pM&P

4.4 Experimental Results

For evaluating the performance of MRP, we’ll use the following data sets :

e Real Life Data : Forest Cover Data(54D), USPS digit data (256D), Mnist digit
data (784D), Orl Face data(10304D) and Feret Image Data (17154D).

e Synthetic Gaussian Data: Single Gaussian data with zero mean and unit standard

deviation and Mixture of 10 Gaussians where the clusters are moderately well sep-
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arated. Dimension of the data are 128, 256, 512, 1024. The generations of these
data sets are given in previous Chapters. Each of these data sets have 8000 data

points and 2000 query points generated from the same distribution.

e Synthetic Uniform Data: Random uniform data in the range [0, 1]%. The dimensions
are 128, 256, 512, 1024. For these data sets also we’ve used 8000 data points and

2000 query points.

Since there is no way of knowing beforehand what should be the optimal number of
projections or what should be the projected dimension or what is the value of K per
projection (i.e. how many NN per projection should be considered), we’ll vary them and
compare the cost associated with them with naive nearest with Early Break strategy.
The reason we’re using naive NN with Early Break (EB) because it is approximately half
the cost of brute force approach and has similar cost but much less overhead than naive
NN with Annulus Bound.

In figures 4.5 to 4.9, we’ve used different reduced dimensions (e.g. different k& values)
and for each of those dimension we have used multiple projections. Also the K value
(number of NN /projection) is being varied in each of the projections. The broken vertical
line indicates the cost of naive NN with Early Break (EB). The different reduced dimen-
sions are arbitrarily chosen. The only constraint is that, k-d tree will be run on those
low dimensional data set and we know that k-d tree’s cost goes exponential when the
dimension exceeds a certain threshold (in our experiment, we’ve used 20 as the maximum
projected dimension). For each of the projected dimension and for each of the K-NN
per projection, we’ve used different numbers of projection in the figures. The accuracy
is measured w.r.t 1-NN i.e. whether the approximate answer of the query matches with
the exact NN.

The area to the left of the straight vertical line indicates that in this region MRP’s

cost is less than Early Break’s. Ideally we want the accuracy in this region to be close to
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Cost Vs Accuracy— USPS Digit data; For various dimension and projection
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Figure 4.5: Multiple Random Projection - USPS Digit Data. The horizontal axis denotes
cost (in % distance calculation of Naive NN) and vertical axis denotes matching per-
centage with 1-NN. For each dimension and for each K-NN/proj, we’ve used 4 different
projections: 10, 12, 15, and 20 .
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Figure 4.6: Multiple Random Projection - Mnist Digit Data. The horizontal axis denotes
cost (in % distance calculation of Naive NN) and vertical axis denotes matching per-
centage with 1-NN. For each dimension and for each K-NN/proj, we’ve used 3 different
projections: 10, 15 and 20.
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Cost Vs Accuracy- Feret data; For various dimension and projection
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Figure 4.7: Multiple Random Projection - Feret Data. The horizontal axis denotes cost
(in % distance calculation of Naive NN) and vertical axis denotes matching percentage
with 1-NN. For each dimension and for each K-NN/proj, we’ve used 3 different projec-

tions: 10, 15 and 20.
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Figure 4.8: Multiple Random Projection - Orl Face Data. The horizontal axis denotes
cost (in % distance calculation of Naive NN) and vertical axis denotes matching per-
centage with 1-NN.For each dimension and for each K-NN/proj, we've used 2 different
projections: 6 and 8. The query set in this data set is very small (40) and with small
number of projections the data set attains high accuracy.
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Cost Vs Accuracy- Forest Cover data; For various dimension and projection
Projections used 10 20
9 T T

T
0O 10-D
O 20-D
—— 15 NN/proj H
20 NN/proj
— — early break

o a —
G O q
o) N

8.9

©
©
T

1-NN Accuracy
® o o ® ®
w S v o ~
T T T T T
Il Il Il Il

o
N
T
1

8.1r B

1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Percentage Distance Calculation

Figure 4.9: Multiple Random Projection - Forest Data. The horizontal axis denotes
cost (in % distance calculation of Naive NN) and vertical axis denotes matching per-
centage with 1-NN. For each dimension and for each K-NN/proj, we’ve used 2 different
projections: 10 and 20.

100%. We see that for most of the figures they are actually close to the perfect accuracy.

One of the reasons behind this good result is that these real life data sets have
lower intrinsic dimensionality than their original dimensionality i.e. they lie on a low
dimensional submanifold or they are clustered in some small fractions of the true space.
When the intrinsic dimensionality is low, the amount of information loss becomes less.
For example, if the dimension of a data set is 1000 and true dimensionality is 100, then
by reducing the dimensionality to 20 dimension will not loose that much information as
it was supposed to loose when the true dimensionality is the same as the original. So,
when the difference between original and intrinsic dimensionality gets higher, MRP gets

more useful.

We also want to compare the best result from MRP with that of Early Break (EB).
The figures from 4.10 to 4.13 depict the results. In these figures, the (o) symbol indicates

matching percentage with 1-NN and the (+) symbol indicates the matching percentage
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with 5-NN. In figure 4.10, it shows that the for real data set the best result of MRP
outperforms EB except for Forest data set. Forest data set has 40 binary dimensions
(most of them are 0) out of 54 total dimensions. So, k-d tree can’t get enough information
to build the tree correctly and thus can’t work well on this data set. But other than this
data set, all the other data sets show good performance. As the dimension increases,
the savings in computational cost become more prominent. Figure 4.10 describes what
percentage of distance calculation is needed to achieve at least 99% accuracy from these
data sets. For Forest data set, we can’t get the desired accuracy with the projected
dimensions that we’'ve used, so we’ve just mentioned the best accuracy that can be
achieved. In the figures from 4.10 to 4.13, the percentage numbers at the body of the
figures indicate this lower accuracy rate (which is the best one that can be achieved)

within the different reduced dimensions we’ve used.

Comparison of Random projection with Early Break: real data sets
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+ best result in MRP for 5-NN
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Figure 4.10: Comparison between best of MRP and Early Break. The least cost needed
to get desired accuracy (99%) with 1-NN is shown by (o) and with 5-NN is shown by
(+) sign. 1-NN indicates the approx result matches with exact NN and 5-NN indicates
it matches with any of the 5 exact NN.



CHAPTER 4. MULTIPLE RANDOM PROJECTION TECHNIQUE 72

Mixture of 10 Gaussians (moderately well separated)
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Figure 4.11: Comparison between best of MRP for mixture of well separated Gaussians
and Early Break. The least cost needed to get desired accuracy (99%) with 1-NN is
shown by (o) and with 5-NN is shown by (+) sign.
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Figure 4.12: Comparison between best of MRP for random uniform data and Early
Break. The least cost needed to get desired accuracy (95%) with 1-NN is shown by (o)
and with 5-NN is shown by (+) sign.
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Figure 4.13: Comparison between best of MRP for single Gaussian data and Early Break.
The least cost needed to get desired accuracy (95%) with 1-NN is shown by (o) and with
5-NN is shown by (+) sign.
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In figure 4.11 we have used a mixture of 10 well separated Gaussian data. These data
sets also perform reasonably well. Although it is tough to get the desired accuracy of 99%
for 1-NN (i.e. the output of MRP matches with exact NN) with the projected dimensions
that we’ve used, it is comparatively easy to achieve that accuracy if we consider 5-NN
(i.e. the output of MRP matches with first 5 exact NN). In this experiment, we increased
the projected dimension until we get the desired accuracy or the projected dimension
reaches a certain threshold. If we can’t get the desired accuracy within this threshold
then we mention the best accuracy (in percentage) that is achieved. From our discussions
in Chapter 2, we know that for well separated mixture of Gaussians, in high dimension
the exact NN technique such as k-d tree is more expensive than EB. That means, even
for well separated Gaussian data sets, in high dimension no exact NN algorithm can
outperform EB. So, using MRP for these kind of data sets will give us results that are
very close to exact results.

Figure 4.12 is for the uniform random data sets. These data sets are unstructured
and purely random. So, with these data sets it is even hard to get reasonable accuracy
w.r.t. 5-NN. For these kinds of data sets it is difficult to outperform naive NN approach.
In this figure, it is shown that it takes considerable amount of computational cost to get
a lower accuracy rate (95%).

The last figure we’ve considered is for single Gaussian data with zero mean and
unit standard deviation (figure 4.12). These data sets are also purely random and not
structured. The results for these data sets are very similar to the uniform data sets

because of the same reason.



Chapter 5

Conclusions

We’ll begin by summing up the work done in the thesis, indicating the main result and its
performance and feasibility. We’ll also describe some of the findings for various nearest
neighbor techniques that we’ve explored through out the thesis. Next, we’ll comment on

some interesting directions for future research.

5.1 Summary

In this thesis, we have presented a fast approximation algorithm for finding nearest
neighbors in high dimension using multiple random projections. Though the concept of
single random projection is not new, it is interesting to see its effectiveness with multiple
projections.

The principal method that we’ve used for finding nearest neighbor in this thesis is the
multiple random projection approach in combination with a fast exact nearest neighbor
technique (e.g. k-d tree) and a naive NN-technique (e.g. Early Break). The random
projection to a few dimension from a large dimensional data sets makes it feasible for k-d
tree to work on that data set in each projection. The k-d tree finds some candidate nearest
neighbors for each projection of a particular query. When we take multiple projections of

the data set and run k-d tree on each of the projected data set then we get more candidate
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points for that query and the probability of finding the exact nearest neighbor among
those candidate points gets higher. Then we use one of the naive nearest approach (Early
Break strategy) on the union of those candidate points to find the nearest neighbor.

Also in this thesis, we’ve compared different exact nearest neighbor techniques and
compared the performance of random projection technique with them. We’ve concluded
that k-d tree is less costly than other tree structures (e.g. SR-tree, Ball tree and R-tree)
when the dimension is small. With the increase in dimension, k-d tree and other tree
structures deteriorate. SR-tree works better than k-d tree in moderate dimension but
the computational cost is close to the naive nearest with Early Break method.

We’ve also used two approximation algorithms and compared those with our method.
One of them is the Metric skip list and other is an e-approximate algorithm by Kleinberg.
Both the methods have large pre-processing overhead which limits their application to
some of the data sets. The results returned by the algorithms are very close approximation

of the actual nearest neighbor (i.e. they provide good accuracy).

5.1.1 Main Results

The main finding of this thesis is, Multiple Random Projection (MRP) works well when
the data sets are high dimensional and have some underlying structure rather than purely
random. That is, if the data set actually lies on some low dimensional manifold or is
clustered in some fraction of the ‘true’ space then, by reducing the dimension with random
projection, we can still get points that are close to the actual nearest neighbor (NN) or
in some case we can find the actual NN. By applying naive nearest approach on these
points which are in the close vicinity of the actual result, we can get the best one among
them which has got a fairly high chance of being the exact NN. By increasing the number
of reduced dimensions, number of projections and number of K-NN per projection, we
can get higher accuracy at the expense of more computational cost.

We’ve used MRP technique on some real life data sets (such as digits, face images)
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and got good accuracy rate on them. For well separated mixture of Gaussian data, this
technique gets results that are very close to actual NN. But for uniform random data
or single Gaussian data set, where all the dimensions are equally important (i.e. they
don’t live in some low dimensional subspace) this technique suffers from both accuracy

and computational cost.

5.2 Future Work

In this section we’ll consider possible directions for future work with the Multiple Ran-
dom Projection approach. We’ll discuss the things that are left undone and which will

strengthen the effectiveness of random projections.

5.2.1 Proof of the new approach

In this thesis, we’ve explored the practical implementation of MRP. We didn’t give any
theoretical proof of this approach. It’ll be very fruitful if we can give a proof of why the
random projection works and what is the probability of finding the exact or approximate

solution in this approach.

5.2.2 Optimal values of different parameters

While implementing MRP, we varied the dimension value, number of projections and
also the number of candidate nearest neighbors for each of the projections. Some of these
combinations exhibit good results i.e. they need lesser computational cost than brute
force approach or any other exact nearest neighbor approach. But we didn’t specify any
method to find those combinations. It’ll be another interesting project to find the optimal

values of these parameters and prove them mathematically.
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5.2.3 Optimal way of choosing from candidate points

A good amount of computation is needed when we try to find the nearest neighbor from
the candidate points. This amount depends on the number of projection J and number
of NN per projection K (the computation increases with the increase in J and K). In
this implementation, we are using naive nearest method for finding NN among those
candidate points. There could be other optimal ways of doing this rather than using
naive nearest method. We store, for each of the J projections, K-NN. So, there should
be at most J x K candidate points (as some of the points may appear multiple times).
If we can find a weighted scheme to find the NN from those candidate points without
using naive nearest method then we can save lots of computations. We’ve tried couple of
weighted schemes on those points. One scheme is to output the point which has appeared
most on the J projections (in case of ties output any of them). One another scheme is to
give some weight for the K-NN in each of the J projections with the 1st NN having the
highest weight (in our case it is 1) and gradually decreasing the weight till the Kth one.
The second approach is little better than the first one but neither of them has given very

satisfactory results.

5.3 The Last word

A huge number of literature about nearest neighbor search can be found in computer
science research field because it is the very basis of some advance research in this field.
Both exact and approximate nearest neighbor techniques find their usefulness in various
areas. Depending on the nature of the application we can choose which technique will be
useful. When the data is low dimensional very efficient exact NN-techniques exist, but
for high dimension these algorithms are intractable. And for some of the applications,
we do not need the exact point rather a close approximation is sufficient.

Multiple Random Projection (MRP) approach combining with k-d tree and Naive
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Nearest with Early Break strategy provide us with some good approximation that can be
extended to get near perfect accuracy. It works well with the data sets that have some
underlying structure and lie in some low dimensional subspace. This promising scheme

needs much closer study.
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