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Subgraph Isomorphism Problem

» Does X have a subgraph isomorphic to G?
» Parameterize by fixing G.
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Colored Subgraph Isomorphism Problem

Does X have a subgraph H such that the given coloring is an
isomorphism from H to G?

(b) G

Subgraph isomorphism efficiently reduces to colored subgraph
isomorphism [Alon—Yuster—Zwick'95].
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Previous Results

Time Complexity
> O(nt™(©)+1) upper bound [AYZ'95]
> pSUtw(G)/logtw(G)) Jower bound assuming ETH [Marx'10]

» “Substantially different techniques” required to close the gap
when G is a 3-regular expander [Alon—-Marx'11].
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A Family of Input Distributions

» Vertices: V(G) x [n]

> Let 5: E(G) — R>o.

» Include each edge {(u, i), (v,j)} independently with
probability n=A{u:v}),
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The Average-Case Problem

» Fail with probability o(1).
» “Lower Bound": for some edge weighting
» “Upper Bound": upper bounds for all edge weightings

» Input distribution is nontrivial if P(3 G-colored subgraph) is
bounded away from 0 and 1.
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ACP Circuits

» Constant-depth, unbounded fanin boolean circuits.

» The size of a circuit is the number of gates.

Og(1)
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Previous Results

Time Complexity
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Our Contributions

7i(G)+0(1)
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> The average-case [AC?, time] complexity is at most

» If G is a hypercube then x(G) is © (tW(G)/\/Iog tW(G))

» 1(G) is Q(the exponent from Marx's ETH-hardness result)
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Union Sequences

Sequences (Hi, ..., Hy) of subgraphs of G such that

(a) Hx =G, and

(b) each H is either an edge or the union of two previous graphs
in the sequence.
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Average-Case Upper Bound

For a union sequence (Hi, ..., Hy):

» For each successive H = AU B, find all H-colored subgraphs
by considering all pairs of A-colored and B-colored subgraphs.

> Runtime is O(maxy E[# H-colored subgraphs]?) w.h.p.
Quadratic improvement with sort-merge-join

> Challenge: sorting is not in AC® [H3stad'86].
n(G)

is the maximum over nontrivial input distributions,
of the minimum over union sequences (Hi,
maxy E[# H-colored subgraphs].
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Our Contributions

> The average-case [AC?, time] complexity is at most
nt(G)+0(1)

» If G is a hypercube then x(G) is © (tW(G)/\/Iog tW(G)).

» x(G) is Q(the exponent from Marx's ETH-hardness result).

110 111
s /
100 101
010 011
s s

000

001

11/14



k(Qq) = 0(27/d)

O(n"(©)) is the maximum over nontrivial input distribu-
tions, of the minimum over union sequences (Hi, ..., Hk),
of maxy E[# H-colored subgraphs].

» Special Case: Edge density = n=2/9 uniformly.

» General Case: Reduce to special case via averaging argument.
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Treewidth of the Hypercube

> tw(Qq) S 2(45,) = 0(29/Vd).
> tw(Qq) is ©(279/+/d) [Chandran—Kavitha'06].
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