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Abstract

This paper considers the problem of learn-
ing a model in model-based reinforcement
learning (MBRL). We examine how the plan-
ning module of an MBRL algorithm uses
the model, and propose that model learn-
ing should incorporate the way the plan-
ner is going to use the model. This is in
contrast to conventional model learning ap-
proaches, such as those based on maximum
likelihood estimation, that learn a predic-
tive model of the environment without explic-
itly considering the interaction of the model
and the planner. We focus on policy gra-
dient planning algorithms and derive new
loss functions for model learning that in-
corporate how the planner uses the model.
We call this approach Policy-Aware Model
Learning (PAML). We theoretically analyze
a model-based policy gradient algorithm and
provide a convergence guarantee for the op-
timized policy. We also empirically evaluate
PAML on some benchmark problems, show-
ing promising results.

1 Introduction

A model-based reinforcement learning (MBRL) agent
gradually learns a model of the environment as it in-
teracts with it, and uses the learned model to plan
and find a good policy. This can be done by plan-
ning with samples coming from the model, instead of
or in addition to the samples from the environment,
e.g., Sutton (1990); Peng and Williams (1993); Sutton
et al. (2008); Deisenroth et al. (2015); Talvitie (2017);
Ha and Schmidhuber (2018). If learning a model is
easier than learning the policy or value function in a

model-free manner, MBRL will lead to a reduction in
the number of required interactions with the real-world
and will improve the sample complexity of the agent.
However, this is contingent on the ability of the agent
to learn an accurate model of the real environment.
Thus, the problem of learning a good model of the en-
vironment is of paramount importance in the success
of MBRL. This paper addresses the question of how to
approach the problem of learning a model of the en-
vironment, and proposes a method called policy-aware
model learning (PAML).

The conventional approach to model learning in
MBRL is to learn a model that is a good predictor
of the environment. If the learned model is accurate
enough, this leads to a value function or a policy that
is close to the optimal one. Learning a good predictive
model can be achieved by minimizing some form of a
probabilistic loss. A common choice is to minimize
the KL-divergence between the empirical data and the
model, which leads to the Maximum Likelihood Esti-
mator (MLE).

The often-unnoticed fact, however, is that no model
can be completely accurate, and there are always dif-
ferences between the model and the real-world. An
important source of inaccuracy/error is the choice of
model space, i.e., the space of predictors, such as a
particular class of deep neural networks. We suffer
an error if the model space does not contain the true
model of the physical system.

The decision-aware model learning (DAML) viewpoint
suggests that instead of trying to learn a model that
is a good predictor of the environment, which may
not be possible as just argued, one should learn only
those aspects of the environment that are relevant to
the decision problem. Trying to learn the complex
dynamics that are irrelevant to the underlying deci-
sion problem is pointless, e.g., in a self-driving car,
the agent does not need to model the movement of the
leaves on trees when the decision problem is simply
to decide whether or not to stop at a red light. The
conventional model learning approach cannot distin-
guish between decision-relevant and irrelevant aspects
of the environment, and may waste the “capacity” of
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the model on unnecessary details. In order to focus the
model on the decision-relevant aspects, we shall incor-
porate certain aspects of the decision problem into the
model learning process.

There are several relatively recent works that can be
interpreted as doing DAML, even though they do not
always explicitly express their goal as such. Some
methods such as Joseph et al. (2013); Silver et al.
(2017); Oh et al. (2017); Farquhar et al. (2018) learn a
model implicitly, in an end-to-end fashion. This can be
interpreted as DAML because the model is learned in
service of improving policy performance. Other meth-
ods incorporate the value function in model-learning.
For example, Value-Aware Model Learning (VAML) is
an instantiation of DAML that incorporates the infor-
mation about the value function in learning the model
of the environment (Farahmand et al., 2017; Farah-
mand, 2018). Recent similar works include Ayoub
et al. (2020); Luo et al. (2019). In the latter, the loss
is defined to only include the value function learned on
the model, whereas Farahmand et al. (2017); Farah-
mand (2018); Ayoub et al. (2020) require the inclusion
of the true value function in their loss as well.

Designing a decision-aware model learning approach,
however, is not limited to methods that benefit from
the structure of the value function. Policy is another
main component of RL that can be exploited for learn-
ing a model. Using the policy in model learning is
done concurrently by D’Oro et al. (2020) and Schrit-
twieser et al. (2019). We briefly compare to D’Oro
et al. (2020) in Section 3. MuZero (Schrittwieser et al.,
2019) takes into account both the value function and
policy. The model in MuZero includes separate func-
tions for predicting next “internal” states, policies and
values. The policy prediction function learns to predict
policies that would be obtained by the MCTS planner
that is used to train it. On the other hand, in this
work we consider policy gradient planners and instead
of predicting policies directly, consider the interaction
of the policy and value function in obtaining policy
gradients. The high-level idea is simple: If we are us-
ing a policy gradient (PG) method to search for a good
policy, we only need to learn a model that provides
accurate estimates of the PG. All other details of the
environment that do not contribute to estimating PG
are irrelevant. Formalizing this intuition is the main
algorithmic contribution of this paper (Section 3).

Our theoretical contribution is a global convergence
guarantee for model-based policy gradient (MBPG).
The result shows the effect of policy approximation
error, the model error, the number of optimization
steps, and a few properties of the MDP and sampling
distribution. This is an extension of the recent work
by Agarwal et al. (2019) to model-based PG. More-

over, our result introduces a new definition of the pol-
icy approximation error, which is perhaps a more accu-
rate way to characterize this error. In the supplemen-
tary materials, we extend our results further and con-
sider the error introduced by an imperfect critic. Our
empirical contributions are demonstrating that PAML
can easily be formulated for a commonly-used PG al-
gorithm and showing its performance in benchmark
environments (Section 5), for which the code is made
available at https://github.com/rabachi/paml. In
addition, our results in a finite-state environment show
that PAML outperforms conventional methods when
the model capacity is limited.

2 Background on Decision-Aware
Model Learning (DAML)

A MBRL agent interacts with an environment, col-
lects data, improves its internal model, and uses
the internal model, perhaps alongside the real-data,
to improve its policy. To formalize, we con-
sider a (discounted) Markov Decision Process (MDP)
(X ,A,R∗,P∗, γ) (Szepesvári, 2010). We denote the
state space by X , the action space by A, the reward
distribution byR∗, the transition probability kernel by
P∗, and the discount factor by 0 ≤ γ ≤ 1. In general,
the true transition model P∗ and the reward distribu-
tion R∗ are not known to an RL agent. The agent
instead can interact with the environment to collect
samples from these distributions. The collected data
is in the form of

Dn = {(Xi, Ai, Ri, X
′
i)}ni=1, (1)

with the current state-action being distributed accord-
ing to Zi = (Xi, Ai) ∼ ν(X × A) ∈ M̄(X × A),
the reward Ri ∼ R∗(·|Xi, Ai), and the next-state
X ′i ∼ P∗(·|Xi, Ai). Note that M̄ refers to the set
of all probability distributions defined over X and A.
In many cases, an RL agent might follow a trajectory
X1, X2, . . . in the state space (and similar for actions
and rewards), that is, Xi+1 = X ′i. We denote the ex-
pected reward by r∗(x, a) = E [R∗(·|x, a)].

A MBRL agent uses the interaction data to learn an
estimate P̂ of the true model P∗ and R̂ (or simply
r̂) of the true reward distribution R∗ (or r∗). This is
called model learning. These models are then used by
a planning algorithm Planner to find a close-to-optimal
policy. The policy may be used by the agent to collect
more data and improve the estimates P̂ and R̂. This
generic Dyna-style (Sutton, 1990) MBRL algorithm is
shown in Algorithm 1.

How should we learn a model P̂ that is most suitable
for a particular Planner? This is the fundamental ques-
tion in model learning. The conventional approach in

https://github.com/rabachi/paml
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Algorithm 1 Generic MBRL Algorithm

Initialize a policy π0

for k = 0, 1, . . . ,K do

Generate training set D(k)
n = {(Xi, Ai, Ri, X ′i)}ni=1 by

interacting with the true environment (potentially us-
ing πk), i.e., (Xi, Ai) ∼ νk with X ′i ∼ P∗(·|Xi, Ai) and
Ri ∼ R∗(·|Xi, Ai).
P̂(k+1) ← argminP∈M LossP(P;∪ki=0D

(i)
n ) {PAML:

LossP = ‖∇θJ(µkθ)−∇θĴ(µkθ)‖2
∪ki=0D

(i)
n
}

r̂ ← argminr∈G LossR(r;∪ki=0D
(i)
n )

πk+1
θ ← Planner(P̂, R̂) {PAML: PG-based (e.g., RE-

INFORCE or DDPG); θk+1 ← θk + η∇θĴ(πkθ ).}
end for, {Return πK}

model learning ignores how Planner is going to use the
model and instead focuses on learning a good predic-
tor of the environment. This can be realized by using
a probabilistic loss, such as KL-divergence, which leads
to the maximum likelihood estimate (MLE), or similar
approaches. Ignoring how the planner uses the model,
however, might not be a good idea, especially if the
model class M, from which we select our estimate P̂,
does not contain the true model P∗, i.e., P∗ /∈ M.
This is the model approximation error and its conse-
quence is that we cannot capture all aspects of the
dynamics. The thesis behind DAML is that instead
of being oblivious to how Planner uses the model, the
model learner should pay more attention to those as-
pects of the model that affect the decision problem
the most. A purely probabilistic loss ignores the un-
derlying decision problem and how Planner uses the
learned model, whereas a DAML method incorporates
the decision problem and Planner.

Value-Aware Model Learning (VAML) is a class of
DAML methods (Farahmand et al., 2016, 2017; Farah-
mand, 2018). It is a model learning approach that
is designed for a value-based type of Planner, i.e., a
planner that finds a good policy by approximating the
optimal value function Q∗ by Q̂∗, and then computes
the greedy policy w.r.t. Q̂∗. In particular, the sug-
gested formulations of VAML so far focus on value-
based methods that use the Bellman optimality oper-
ator to find the optimal value function. More detail
about VAML can be found in the supplementary ma-
terial. The value function and our knowledge about
it, however, are not the only extra information that
we might have about the decision problem. Another
source of information is the policy. The goal of the
next section is to develop a model learning framework
that benefits from the properties of the policy.

3 Policy-Aware Model Learning

The policy gradient (PG) algorithm and its sev-
eral variants are important tools to solve RL prob-
lems (Williams, 1992; Sutton et al., 2000; Baxter and
Bartlett, 2001; Marbach and Tsitsiklis, 2001; Kakade,
2001; Peters et al., 2003; Cao, 2005; Ghavamzadeh and
Engel, 2007; Peters and Schaal, 2008; Bhatnagar et al.,
2009; Deisenroth et al., 2013; Schulman et al., 2015).
These algorithms parameterize the policy and compute
the gradient of the performance (cf. (2)) w.r.t. the pa-
rameters. Model-free PG algorithms use the environ-
ment to estimate the gradient, but model-based ones
use an estimated P̂ to generate “virtual” samples to
estimate the gradient. In this section, we derive a loss
function for model learning that is designed for model-
based PG estimation. We specialize the derivation to
discounted MDPs, but the changes for the episodic,
finite-horizon, or average reward MDPs are straight-
forward.

A PG method relies on accurate estimation of the gra-
dient. Intuitively, a model-based PG method would
perform well if the gradient of the performance eval-
uated according to the model P̂ is close to the one
computed from the true dynamics P∗. In this case,
one may use the learned model instead of the true
environment to compute the PG. To formalize this in-
tuition, we first introduce some notations.

Given a transition probability kernel Pπ, we denote
by Pπ(·|x; k) the future-state distribution of following
policy π from state x for k steps, i.e., Pπ(·|x; k) ,
(Pπ)k(·|x), with the understanding that (Pπ)0(·|x) =
I is the identity map. For an initial probability dis-
tribution ρ ∈ M̄(X ),

∫
ρ(dx)Pπ(·|x; k) is the dis-

tribution of selecting the initial distribution accord-
ing to ρ and following Pπ for k steps. We define a
discounted future-state distribution of starting from
ρ and following Pπ as ρπγ (·) = ργ(·;Pπ) , (1 −
γ)
∑
k≥0 γ

k
∫

dρ(x)Pπ(·|x; k). We may drop the de-
pendence on π, if it is clear from the context. We use
a shorthand notation ρ̂πγ = ργ(·; P̂π), and a similar
notation for other distributions, e.g., µπγ and µ̂πγ .

For an MDP (X ,A,R∗,P, γ), we use the subscript P
in the definition of value function V πP and QπP , if we
want to emphasize its dependence on the transition
probability kernel. We reserve the use of V π and Qπ

for V πP∗ and QπP∗ , the value functions of the true dy-
namics.

The performance of an agent starting from a user-
defined initial probability distribution ρ ∈ M̄(X ), fol-
lowing policy π in the true MDP (X ,A,R∗,P∗, γ) is

J(π) = Jρ(π) =

∫
dρ(x)V π(x). (2)



Policy-Aware Model Learning for Policy Gradient Methods

When the policy π = πθ is parameterized by θ ∈ Θ,
from the derivation of the PG theorem (cf. proof of
Theorem 1 by Sutton et al. 2000), we have that

∂V πθ (x)

∂θ
=

∑
k≥0

γk
∫
P∗πθ (dx′|x; k)

∑
a′∈A

∂πθ(a
′|x′)

∂θ
Q
πθ
P∗(x

′, a′).

If the dependence of Q on the transition kernel is clear,
we may omit it and simply use Qπθ . We also use Pπθ
instead of P∗πθ to simplify the notation. The gradient
of the performance J(πθ) (2) w.r.t. θ is then

∇θJ(πθ) =
∂J(πθ)

∂θ
= (3)∑

k≥0

γk
∫

dρ(x)

∫
Pπθ (dx′|x; k)

∑
a′∈A

∂πθ(a
′|x′)

∂θ
Qπθ (x′, a′).

Let us expand the definition of ∇θJ , which shall help
us easily describe several ways a model-based PG
method can be devised. For two transition probability
kernels P1 and P2, and a policy πθ, we define

∇θJ(πθ;P1,P2) =
∑
k≥0

γk
∫

dρ(x)

∫
Pπθ1 (dx′|x; k)

∑
a′∈A

∂πθ(a
′|x′)

∂θ
QπθP2

(x′, a′). (4)

This vector-valued function can be seen as the PG of
following πθ according to P1, and using a critic that is
the value function in an MDP with P2 as the transition
kernel.

We have several choices to design a model learning
loss function that is suitable for a PG method. The
overall goal is to match the true PG, i.e., ∂J(πθ)

∂θ =
∇θJ(πθ;P∗,P∗), or an empirical estimate thereof,
with a PG that is somehow computed by the model

P̂. Let us define ∂Ĵ(π)
∂θ , ∇θJ(πθ; P̂,P∗) and set the

goal of model learning to

∂J(πθ)

∂θ
≈ ∂Ĵ(πθ)

∂θ
. (5)

This ensures that the gradient estimate based on fol-
lowing the learned model P̂πθ and computed using the
true action-value function QπP∗ is close to the true gra-
dient. There are various ways to quantify the error
between the gradient vectors. We choose the `2-norm
of their difference. When the gradient w.r.t. the model
is close to the true gradient, we may use the model to
perform PG.

Subtracting the gradient of the performances under
two different transition probability kernels and taking

the `2-norm, we get a loss function between the true
and model PGs, i.e.,

cρ(Pπθ , P̂πθ ) =
∥∥∥∂J(πθ)

∂θ
− ∂Ĵ(πθ)

∂θ

∥∥∥
2

=∥∥∥∑
k≥0

γk
∫

dρ(x)

∫ (
Pπθ (dx′|x; k)− P̂πθ (dx′|x; k)

)
∑
a′∈A

∂πθ(a|x′)
∂θ

Qπθ (x′, a′)
∥∥∥

2
. (6)

Note that the summation (or integral) over actions
can be done using any of the commonly-known Monte
Carlo gradient estimators such as the score function
(REINFORCE) or pathwise gradient estimators (Mo-
hamed et al., 2019), as we demonstrate in the Empir-
ical Studies.

Several comments are in order. This is a population
loss function, in the sense that P appears in it. To
make this loss practical, we need to use its empiri-
cal version. Moreover, this formulation requires us to
know the action-value function Qπθ = QπθP∗ , which is
w.r.t. the true dynamics. This can be estimated using
a model-free critic that only uses the real transition
data (and not the data obtained by the model P̂π) .
We provide the empirical version of this loss function
in the supplementary material.

Also note the loss function cρ(Pπθ , P̂πθ ) (6) is defined
for a particular policy πθ. However, policy πθ grad-
ually changes during the run of a PG algorithm. To
deal with this change, we should regularly update P̂πθ
based on data collected by the most recent πθ. In the
supplementary material, we show that under certain
conditions, the error in the PG estimation of a new
policy πθnew using a model that was learned for an old
policy πθold is O(‖θnew − θold‖). Our empirical studies
(including in the Supp) show that the model does not
expire quickly with policy changes.

Setting ∇θJ(πθ;P∗,P∗) ≈ ∇θJ(πθ; P̂,P∗) is only one
way to define a model learning objective for a PG
method. We can opt instead to find a P̂ such that

∇θJ(πθ;P∗,P∗) ≈


∇θJ(πθ; P̂,P∗), (7a)

∇θJ(πθ;P∗, P̂), (7b)

∇θJ(πθ; P̂, P̂). (7c)

The difference between these cases is in whether the
discounted future-state distribution is computed ac-
cording to the true dynamics P∗ or the learned dy-
namics P̂, and whether the critic QπθP is computed
according to the true dynamics or the learned dynam-
ics. Case (7a) is the same as (5). Case (7b) uses
the model only to train the critic, but not to com-
pute the future-state distribution ρ̂γ . Having P̂, the
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critic can be estimated using Monte Carlo estimates
or any other method for estimating the value function
given a model. This is similar to how D’Oro et al.
(2020) use their model, though their loss function is
a weighted log-likelihood, and the model-learning step
does not take the action-value function into account.
Case (7c) corresponds to calculating the whole PG ac-
cording to the model P̂π. This requires us to estimate
both the future-state distribution and the critic ac-
cording to the model. In this paper, we theoretically
analyze (7a) and provide empirical results for approx-
imations of (7a) and (7b).

4 Theoretical Analysis of PAML

We theoretically study the convergence properties of a
model-based PG (MBPG) method. We study how the
model error affects the convergence behaviour. The
result is generic for any MBPG method, but it further
enlightens why PAML might be a good alternative to
MLE.

Our result extends Agarwal et al. (2019) from a model-
free setting, where the gradients are computed accord-
ing to the true dynamics Pπ of the policy, to the
model-based setting where the PG is computed ac-
cording to a learned model, incorporating the model
error in the convergence result. We also remove the
assumption of access to a perfect critic in our anal-
ysis, which we defer to the supplementary material
due to space constraints. Additionally, we introduce
a new notion of policy approximation error, which is
perhaps a better characterization of the approxima-
tion error of the policy space. We would like to note
that providing global convergence guarantees for PG
methods and variants has only recently attracted at-
tention (Agarwal et al., 2019; Shani et al., 2020; Bhan-
dari and Russo, 2019; Liu et al., 2019). This section
is a very brief summary of the theoretical results in
the supplementary material, which not only include
proofs, but also more discussion and intuition.

We analyze a projected PG with the assumption that
the PGs are computed exactly. We consider a setup
where the performance is evaluated according to a dis-
tribution ρ ∈ M̄(X ), but the PG is computed accord-
ing to a possibly different distribution µ ∈ M̄(X ).
To be concrete, let us consider a policy space Π =
{πθ : θ ∈ Θ } with Θ being a convex subset of Rd and
ProjΘ be the projection operator onto Θ. Let us de-
note the best policy in the policy class Π according
to the initial distribution ρ by π̄ρ (or simply π̄, if it
is clear from the context), i.e., π̄ ← argmaxπ∈Π Jρ(π).
We define a function that we call Policy Approximation
Error (PAE). Given a policy parameter θ and w ∈ Rd,

and for a probability distribution ν ∈ M̄(X ), define

LPAE(θ, w; ν) , EX∼ν
[∣∣∣∑
a∈A

(
π̄(a|X)− πθ(a|X)−

w>∇θπθ(a|X)
)
Qπθ (X, a)

∣∣∣].
This can be roughly interpreted as the error in
approximating the improvement in the value from
the current policy πθ to the best policy, π̄, in
the class, i.e.,

∑
a∈A(π̄(a|X) − πθ(a|X))Qπθ (X, a),

by a linear model
∑
a∈A w

>∇θπθ(a|X)Qπθ (X, a) =

w>EA∼πθ(·|X) [∇θ log πθ(a|X)Qπθ (X, a)].

This quantity can be compared to the Bellman Policy
Error of Agarwal et al. (2019), which is

LBPE(θ, w; ν) , EX∼ν
[∣∣∣∑
a∈A

∣∣ argmax
a∈A

Qπθ (X, a)−

πθ(a|X)− w>∇θπθ(a|X)
∣∣∣∣∣].

There are two differences between these two notions
of policy approximation errors. The first is that LPAE

considers how well one can approximate the best pol-
icy in the policy class Π, instead of the greedy policy
w.r.t. the action-value function of the current policy
as in LBPE. Moreover, while LBPE ignores the value
function and its interaction with the policy error, LPAE

explicitly considers it. For example, if the reward func-
tion is constant everywhere, the action-value function
Qπ for any policy would be constant too. In this case,
LPAE(θ; ν) is zero (simply choose w = 0 as the mini-
mizer), but LBPE may not be. We leave further study
of these two policy approximation errors to a future
work.

For any θ ∈ Θ, we can define the best w∗(θ) = w∗(θ; ν)
that minimizes LPAE(θ, w; ν) as

w∗(θ; ν)← argmin
w+θ∈Θ

LPAE(θ, w; ν). (8)

We use LPAE(θ; ν) to represent LPAE(θ, w∗(θ); ν). We
may drop the distribution ν whenever it is clear from
the context. We consider a projected PG algorithm
that uses the model P̂πθk and the exact value function
Qπk to compute the gradient, i.e.,

θt+1 ← ProjΘ

[
θt + η∇θJµ(πθk , P̂

πθk , Qπk )
]
, (9)

with a learning rate η > 0 to be specified. Refer to
the supplementary materials for results on when an
estimated, and thus inexact, model-free critic is used.

We require the following smoothness assumption on
the policy space.

Assumption A1 (Assumption 6.12 of Agarwal
et al. (2019)) Assume that there exist finite con-
stants β1, β2 ≥ 0 such that for all θ1, θ2 ∈ Θ, and for
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all (x, a) ∈ X × A, we have |πθ1(a|x) − πθ2(a|x)| ≤
β1 ‖θ1 − θ2‖2 and ‖∇θπθ1(a|x) − ∇θπθ1(a|x)‖2 ≤
β2 ‖θ1 − θ2‖2.

As an example, this assumption holds for an exponen-
tial family πθ(a|x) ∝ exp

(
φ>(a|x)θ

)
with bounded

features ‖φ(a|x)‖2 ≤ B. In that case, β1 = 2B and
β2 = 6B2.

We are now ready to state the convergence guarantee
for the projected PG method for a general policy class.

Theorem 1. Consider any initial distributions ρ, µ ∈
M̄(X ) and a policy space Π parameterized by θ ∈ Θ
with Θ being a convex subset of Rd. Assume that all
policies πθ ∈ Π satisfy Assumption A1 and 0 ≤ γ < 1.
Let T be an integer number. Starting from a πθ0 ∈ Π,
consider the sequence of policies πθ1 , . . . , πθT generated
by the projected model-based PG algorithm (9) with
step-size as defined in the Supplementary. Assume
that for any policy πθ ∈ {πθ0 , . . . , πθT−1

}, there ex-
ist constants εPAE and εmodel such that LPAE(θ; ρπ̄γ ) ≤
εPAE (policy approximation error) and ‖∇θJµ(πθ) −
∇θĴµ(πθ)‖2 ≤ εmodel (model error). We then have

Et∼Unif(1,...,T ) [Jρ(π̄)− Jρ(πθt)] ≤

O
(
εPAE

1− γ +
εmodel

1− γ +
1

(1− γ)
√
T

)
.

This result shows the effect of the policy approxima-
tion error, the model error, and the number of itera-
tions, and order notation is used to drop constants. We
observe that the error due to optimization decreases as
O( 1√

T
). The policy approximation error, εPAE, is sim-

ilar to the function approximation term (or bias) in
supervised learning, and depends on how expressive
the policy space is. This term may not go to zero,
which means that the projected PG method may not
find the best policy in the class.

The model error, εmodel, captures how well one can re-
place the PG computed according to the true dynam-
ics Pπ with the learned dynamics P̂π. Its magnitude
depends on how expressive the model class is, the num-
ber of samples used in minimizing the loss, etc. Note
that this error is the same as the population loss of
PAML (6). The PAML objective appears naturally as
a factor in the convergence result of a generic MBPG
method.

How does PAML compare to MLE as an objective for
model learning? Recall that the MLE is the mini-
mizer of the KL-divergence between the empirical dis-
tribution of samples generated from Pπ and P̂π. On
the other hand, the population version of PAML’s loss
(6) is exactly the error in the PG estimates that we
care about. We theoretically analyze the error be-
tween ∇θJ(πθ) obtained following the true model P∗

and ∇θĴ(πθ) obtained following P̂, and relate it to
the error between the models. We only briefly report
this result here, and defer its detailed description to
the supplementary material. The result states that
for an exponential family parametrization of a policy
(see the supplementary for a general policy parame-
terization), the PG error ‖∇θJ(πθ) − ∇θĴ(πθ)‖2 can
be upper bounded by

γQmaxB2

(1− γ)2
×
{
cPG(ρ, ν;πθ) ‖∆Pπθ‖1,1(ν) ,

2 ‖∆Pπθ‖1,∞ ,
(10)

where B2 is the `2-norm of features used in the def-
inition of the policy, the value function is bounded
by Qmax, ‖∆Pπθ‖1,1(ν) and ‖∆Pπθ‖1,∞ are total
variation-based norms of the model error ∆Pπ =
Pπ − P̂π, and cPG(ρ, ν;πθ) , ‖dρ

πθ
γ

dν ‖∞ is the supre-
mum of the Radon-Nikodym derivative of distribution
ρπθγ w.r.t. ν.

As we show in the supplementary, the R.H.S. of (10)
can be further upper-bound by a function of the KL-
divergence between the distributions through an appli-
cation of Pinsker’s inequality. This upper bound sug-
gests why PAML might be a more suitable approach
in learning a model. An MLE-based approach tries to
minimize an upper bound of an upper bound for the
quantity that we care about (PG error). This consec-
utive upper bounding might be quite loose. On the
other hand, the population version of PAML’s loss (6)
is exactly the error in the PG estimates that we care
about.

A question that may arise is that although these two
losses are different, are their minimizers the same? In
Figures 1a and 1b we show through a simple visual-
ization that the minimizers of PAML and KL could
indeed be different. We illustrate that the minimizers
of PAML and KL are different when we seek to esti-
mate the expectation of a function f , whose weight
lies mostly on a specific part of the underlying distri-
bution.

5 Empirical Studies

We compare the performances of PAML and MLE in
the framework of Algorithm 1. We first present an il-
lustration of PAML and MLE for a finite-state MDP.
We then discuss how the loss introduced in Section 3
can be formulated for PG-based planner DDPG (Lilli-
crap et al., 2015). Details for reproducing these results
and additional experiments can be found in the sup-
plementary materials.

We illustrate the difference between PAML and MLE
on a finite 3-state MDP. In this setting, we can calcu-
late exact PGs with no estimation error, and thus the
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(a) (b) (c) (d)(i) (ii) (iii) (iv)

(a) Visualization of minimizers for PAML and MLE. P∗ is
a Gaussian mixture model with 2 modes and the learned
model P̂ is a single Gaussian. The loss minimized by

PAML for this simple case is: |
∑
x(P∗ − P̂)f(x)|2, where

f is an arbitrary function.
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(b) Contours of the two loss surfaces for Figure 1a(iii). Note
that the minimizers of PAML and KL-divergence are at differ-
ent points. (The losses were log-normalized for better visual
contrast in this figure.)

exact PAML loss and KL-divergence. In these experi-
ments, we use Projected Gradient Descent to update
the model parameters and constrain their L2 norm,
in order to limit model capacity. In Figure 2 (Left
two), we compare the PAML loss and KL-divergence
of models trained to minimize each for a fixed policy.
We see that the PAML loss of a model trained to min-
imize PAML is (expectedly) much lower than that of
a model trained to minimize KL. Note that the PAML
loss of the KL minimizer decreases as the constraint
on model parameters is relaxed, whereas the PAML
minimizer is much less dependent on model capacity.

We also evaluate the performances of policies learned
using these models, in a process similar to Algorithm 1,
but with exact values rather than sampled ones. Re-
ferring to Figure 2 (Right), as the norm of the model
parameters becomes smaller, the performance of the
KL agent drops much more than the PAML agent.
However, when the constraint is relaxed (i.e. in-
creased), the KL agent performs similarly to the PAML
one. This example provides justification for the use of
PAML: when the model space is constrained, such that
it does not contain P∗, PAML is able to learn a model
that is more useful for planning.

A question that arises is how updates on the policy
affect model error since PAML is policy-aware. The
top of Figure 3 shows the change in LPAML as a re-
sult of a number of policy updates in an epoch (i.e.
an epoch refers to each iteration k in 1), while keep-
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Figure 2: (Top) Comparison of the minimizers of the

PAML loss and the KL-divergence as a function of the

maximum allowable norm of model parameters. Note that

the minimizer of PAML does not necessarily correspond

to small KL-divergence. (Bottom) Policy performance as

a function of model loss and maximum norm of model pa-

rameters. Note that there is no estimation error in this

setting. Performance of the PAML agents degrades much

less than the performance of the KL agent when the norm

of model parameters is constrained.

ing the model fixed in that epoch. The bottom of
Figure 3 shows the policy performance over the same
epochs. We observe in the 3-State MDP experiments
that the change in LPAML decreases as the policy per-
formance improves. This is expected as the policy,
and therefore model, converge. We also observe that
for higher numbers of policy updates, the performance
of the PAML agent does not always show consistent
improvement over the KL agent, especially at the be-
ginning of training. This is also expected as the PAML
model is only accurate for policies similar to the policy
it was trained on. We observe a similar trend for the
continuous control experiments in the supplementary.
We see that the change in LPAML for more virtual
episodes is higher. This is expected as the gradients in
this case cannot be exactly computed and so the pol-
icy is not necessarily converging to the optimal policy
at each timestep, which can also be seen in the per-
formance plots. Thus, the optimal number of policy
updates should be tuned according to the dynamics.
Another option is to use an objective closer to KL at
the beginning of training and fine-tune with PAML
as the policy improves. We leave exploration of this
option to future work.

We next test PAML on several continuous control
environments. We use the actor-critic algorithm
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Figure 3: (Top) Difference in PAML loss after a number of

policy updates for a fixed model. Note that in this case π0

would be the policy the model is trained for, and πT would

be the policy with the most number of updates. The model

is updated for 200 steps after each set of policy updates

(with learning rates in the supplementary). (Bottom) The

true policy performance corresponding to each timestep in

the Top diagram. The lines for 1 policy update (black)

correspond to the plots in Figure 2. Note that there is no

source of randomness in these experiments.

Deep Deterministic Policy Gradient (DDPG) (Lilli-
crap et al., 2015) as the planner for models learned
with PAML and MLE.We also evaluate the perfor-
mance of the model-free method for reference. Al-
though this is a relatively old algorithm, we defer to it
due to its simplicity and reasonably good performance
on benchmark environments.Our goal with these ex-
periments is not to show state-of-the-art results but
rather to demonstrate the feasibility of PAML on high-
dimensional problems, and show an example of how
the loss in (6) could be formulated.

(additional types in the supplementary):

1. Random irrel dims: (xt, η) ∈ Rd+n, η ∼ Nn(0, 1)

2. Correlated irrel dims: (xt, ηt) ∈ Rd+n, where
ηt = ηt0 and η0 ∼ Unif(0, 1). n can be chosen by the
user. We show results for a few cases.
3. Linear redundant dims: (xt,W

Txt) ∈ R2d,
where W ∼ Unifd×d(0, 1)
4. Nonlinear and linear redundant dims:
(xt, cos(xt), sin(xt),W

Txt) ∈ R4d, W as in type 3.

In this way, the agent’s observation vector is higher-
dimensional than the underlying state, and it contains
information that would not be useful for a model to
learn. In the most general case, this may be replaced
by the full-pixel observations, which contain more in-
formation than is necessary for solving the problem.
To illustrate the differences between model learning
methods, we choose to forgo evaluations over pixel in-
puts for the scope of this work. Although differentiat-
ing between useful state variables and irrelevant vari-
ables generated by concatenating noise may be overly
simplistic (for example, a certain set of pixels could
convey both useful and unnecessary information that
the model may not know are unnecessary), it is an ap-
proximation that can highlight the weakness of purely
predictive model learning. The DDPG planner uses
a deterministic policy and explores using correlated
noise (Lillicrap et al., 2015). The PAML formulation
we use for this planner corresponds to case (7a): the
model PG is calculated using the future-state distri-
bution of P̂π, and the true PG using samples from
P∗π. The critic for both the model PG and true PG is
learned using samples collected from P∗π. Although
here we demonstrate formulating the PAML loss with
an actor-critic algorithm as the planner, other PG-
based algorithms can also be used.

To train a model using MLE, we minimize the squared
`2 distance between predicted and true next states for
all time-steps in a trajectory. Our model in all experi-
ments is deterministic and directly predicts the change
in state from the previous to the current timestep.

The results are shown in Figure ??. In general, PAML
performs similarly to MLE in these domains. It seems
that the gains that were observed in the tabular do-
main do not transfer to these domains. This could
be due to several factors. For example, it is not clear
how to limit the capacity of neural networks as we
did for the experiments in Figure 2. Another reason
could be that for the planning horizon used (1), the
MLE model performs sufficiently well to hide any dif-
ferences between the models. Additional experiments
are in the supplementary materials.

6 Discussion and Future Work

We introduced Policy-Aware Model Learning, a
decision-aware MBRL framework that incorporates
the policy in the way the model is learned. PAML
encourages the model to learn about aspects of the
environment that are relevant to planning by a PG
method, instead of trying to build an accurate predic-
tive model. We proved a convergence guarantee for
a generic model-based PG algorithm, and introduced
a new notion of policy approximation error. We em-
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Figure 4: Comparison of policies trained using a
model-free method (DDPG, Lillicrap et al. 2015), or
by planning using a model learned by PAML, or MLE.
Experimental details in the supplementary. Solid lines
indicate mean of 5 runs and shaded regions the stan-
dard error.

pirically evaluated PAML and compared it with MLE
on some benchmark domains. A fruitful direction is
deriving PAML loss for other PG methods, especially
the state of the art ones.
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