Romina Abachi

Vector Institute
MaRS centre, West Tower
661 University Ave., Suite 710
Toronto, ON M5G 1M1
romina@cs.toronto.edu
Github Scholar

Research Interests

Reinforcement Learning (model-based, robustness, safe exploration, risk-averse, industrial and robotic applications, control on networks); Machine Learning (statistical learning theory, optimization)

Education

P.h.D Student in Computer Science

Toronto ON

University of Toronto, Artificial Intelligence

Feb 2020 -- present

- Supervisors: Amir-masssoud Farahmand and Sheila McIlraith
- Relevant courses: Minimizing Expectations, Knowledge Representation and Reasoning, Algorithms in Private Data Analysis, Algorithms in Collective Decision Making

M.A.Sc. in Electrical and Computer Engineering

Toronto ON

University of Toronto, Probabilistic and Statistical Systems Lab

Sept 2017 -- Jan 2020

- Supervisors: Amir-masssoud Farahmand and Brendan Frey
- Thesis: "Policy-Aware Model-based Reinforcement Learning"
- Relevant courses: Statistical Learning Theory, Convex Optimization, Probabilistic Learning and Reasoning

B.A.Sc. in Electrical Engineering, High Honours, with PEY

Toronto ON

University of Toronto

Sept 2012 -- Jun 2017

- Capstone project: "Quadcopter-based Solar Panel Cleaning"
 - Supervised by: Professor Olivier Trescases
- Relevant courses: Machine Learning, Digital Communications, Algorithms & Data Structures
- Cumulative GPA: 3.92/4.00

Publications

- **Abachi, Romina**, Mohammad Ghavamzadeh, and Amir-massoud Farahmand. "Policy-Aware Model Learning for Policy Gradient Methods." arXiv preprint arXiv:2003.00030 (2020)
- Nikishin, Evgenii, **Romina Abachi**, Rishabh Agarwal, and Pierre-Luc Bacon. "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation." arXiv preprint arXiv:2106.03273 (2021).
- Abachi, Romina*, Claas Voelcker*, Animesh Garg, and Amir-massoud Farahmand. "VIPer: Iterative Value-Aware Model Learning on the Value Improvement Path." Decision Awareness in Reinforcement Learning Workshop at the International Conference on Machine Learning (ICML) 2022. (* equal contribution)
- Abachi, Romina, and Amir-massoud Farahmand. "Optimistic Risk-Aware Model-based Reinforcement Learning." The 15th European Workshop on Reinforcement Learning (EWRL 2022).

Research Experience

Research Assistant for Industrial Applications of RL

Toronto ON

University of Toronto - Vector Institute for Artificial Intelligence (jointly with Telus Comm., Linamar Corp., Loblaws Ltd.)

May 2019 -- Jan 2020

- Assisted in teaching a class of 6-10 industry participants the foundations of reinforcement learning, created assignments and conducted reading group sessions
- Working individually with each company's group to guide the design of a simulation for their project and implement it in Python, and to come up with possible solutions
- Projects were: allocation of trucks to gates at a distribution centre, datacenter cooling, and short-distance fleet management. Some results presented here.

Research Scientist Intern

Toronto ON

Borealis AI - Fundamental Team

May -- Oct 2018

- Studied literature on verifiable robustness bounds to adversarial attacks, especially those using convex relaxations and duality theory to obtain trainable robust networks with guarantees
- Improved on the state-of-the-art robustness bounds based on convex relaxations by \sim 8% by replacing the activation function in the dual network by a dual version of leaky ReLU (not published).

Projects

Stochastic Dueling Contextual Bandits for Discovery of Collective Art PreferencesUniversity of Toronto Jan 2022 -- March 2022

• On a quest to find the "Most preferred painting" of a group of people, we created a tool (unpublished) using a StyleGAN model and stochastic dueling contextual bandits to gradually find the collective preferences of different individuals by moving in the latent space of a generative model (inspired by: The People's Choice project).

Robust Planning for Model-based Reinforcement Learning

Toronto ON

University of Toronto

Jan 2021 -- April 2021

- Studied robust planning problem given a probabilistic constraint on the dynamics model
- Using the modified differential method of multipliers, formulated the constrained optimization in terms of gradient descent updates
- Preliminary results showed improvement over using the MLE for planning. Some further steps are being explored.

PAC Learning with zero-Concentrated Differential Privacy

Toronto ON

University of Toronto

Sept 2020 -- Jan 2021

- Studied probably approximately correct (PAC) learning under zero-concentrated differential privacy (zCDP) constraints. Since this is a notion of privacy not as strict as pure-DP and not as loose as approximate-DP, we expect to find the sample complexity to be in-between these two notions
- We gave sample complexity results for finite hypothesis classes and point functions. This work is ongoing.

Learning Planning Models from Partially-Observed Data

Toronto ON

University of Toronto

Sept 2020 -- Jan 2021

• We studied the performance of symbolic planning with partially-observed image data. We combined the Latplan framework for learning symbolic models for planning directly from image inputs (proposed by Asai and Fukunga, 2018) and the GP-VAE algorithm (proposed by Fortuin et al, 2020) for missing-input imputation. In this way we leveraged developments in the probabilistic imputation of multi-variate time series to improve planning performance with missing data.

Crafting Adversarial Attacks using Generative Adversarial Networks

Toronto ON

University of Toronto - Course project for Scalable Models of Uncertainty

Sept -- Dec 2017

• Developed a method for fast creation of adversarial attacks using Generative Adversarial Networks, improving on the performance of the Fast-Gradient Sign Method (FGSM) attack, while beating the time of both FGSM and Carlini-Wagner attacks.

Quadcopter-based Solar Panel Cleaning

Toronto ON

University of Toronto - Capstone project

Sept 2016 -- Apr 2017

- Designed and implemented an autonomous quadcopter-based solution to cleaning loose dirt from solar panels
- Created a daylight simulator and used it in combination with a power monitor to automatically detect when solar panel needs to be cleaned due to loose dirt lowering power output, triggering a quadcopter into flight.
- Developed a navigation algorithm using a PID controller to correct for drifts and errors.
- Used the OpenCV library to detect solar panel from camera feed of drone.
- Self-taught Node.js in order to develop a web-based GUI to monitor the position of the drone and the power status of the solar panel.

Scholarships and Awards

• Edward S. Rogers Sr. Graduate Scholarship	Sept 2017 Jan 2018
 General Motors Women in Electrical and Mechanical Engineering Award 	Oct 2014 Oct 2015
Trinity College Chancellor's Scholarship	Sept 2012
• Perimeter Institute Luke Santi Memorial Award for Student Achievement	July 2011

Teaching Experience

Teaching Assistant

University of Toronto

• Introduction to Reinforcement Learning (Graduate)

Winter 2021

Introduction to Machine Learning (CSC311)

Fall 2020, 2021, Winter 2022

Introduction to Machine Learning (MIE324)

Fall 2018

• Introduction to Electromagnetics (ECE221)

Winter 2018

• Fields and Waves (ECE320)

Fall 2017

Work Experience

Hardware Design Engineer, Intern

San Diego CA

Qualcomm Technologies, Inc.

May -- Aug 2016

- Developed a tool in VBA for automating the calculation of trace width on a PCB based on electrical current requirements.
- Performed simulations to check the resistance of traces on PCB to ensure losses did not exceed margin.
- Designed a circuit to break-out GPIO connections for testing.
- Designed a test vehicle board for testing chips with very fine-pith ball grid arrays.