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Dynamical characterisation of mechanistic models

e Dynamical systems learned from experimental data are widespread in the physical
sciences, including fluid dynamics, thermodynamics, and electromagnetism.

e They play a particularly important role in advancing our understanding of biology,
typically studied as Ordinary Differential Equations (ODEs).

e The ability to precisely engineer biology could enable substantial breakthroughs in
medicine and provide environmentally sustainable processes and products.

e \We develop a novel model class made computationally tractable by recent advances
in Bayesian Deep Learning

Case study: genetically engineering a biosensor

e \We empirically validate our method by predicting the dynamic behaviour of bacteria
that were genetically engineered to function as biosensors for two molecular input

signals.

e Fluorescence measurements were collected to quantify the behaviour of a range of 2-
input biosensors that differ in two of their constituent components (illustrated below
as the yellow and blue symbols, panels A & B).

e The goal is to quantify, with uncertainty, the posterior distributions of the parameters

of a mechanistic model that describes the interactions between the input signals, the
internal components and the ability to produce (fluorescent) outputs.

e T his enables the device to be optimised in silico, and guides the selection of better
genetic components (panel F).
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Modelling with nonlinear mixed-effects ODEs

e \We propose a deep generative nonlinear mixed-effects
(NLME) model, e.g, a generative model of a dynam-
ical system that exhibits hierarchical latent structure.
This enables us to combine individual-level (each time-
series), group-level (each genotype) and global param-

eters. l \
o \We cast parameter inference as stochastic optimisation *_;
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of an end-to-end differentiable, block-conditional vari-

" ‘ “
ational autoencoder. @«@
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e T his model class is highly flexible: the ODE right-hand
sides can be a mixture of user prescribed or white-box
sub-components and neural network or black-box sub-

components.
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ODEs: interpretable white-box or flexible black-box

White box ODE model Black box ODE model
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Observer process Generative process

Signal White-box Black-box z ~ py(z|g) (1
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RFP c.[RFP] 0.1 = Simulate( g, xo) (

YEP .([YFP] + [Fss0]) 0.2 M =4(X), X =pX,z) (4

CFP c.([CFP] + [Fysol)  zo.23 Y ~ p(Y|M, X)) (5

Conditional VAEs enable fast, scalable inference

e [ he computational flow graph for encoding, sampling from the variational posterior,
and simulating the dynamical system. Note that the sample and simulate operations

are constrained to be differentiable.
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e Hence, the variational posterior is
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Population Individual J

Group
e Previous attempts at learning similar joint distributions have used MCMC

e Conditional VAEs are an order of magnitude faster, although MCMC will converge
given enough time
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Figure 2: VI Convergence Figure 3: MCMC Convergence
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Strong model fit evaluated by simulation
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Strong performance on input-output summaries

Black and white box models learn similar dynamics

A [RFP] [YFP] + [F530]  [CFP] + [F480]
1.0 A . .
X
o
<2
3 - 0.5
<3
= 3 0.0 -
3 0O 4 8 12 16 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16 0 4 8 12 16 0 4 8 12
B 3 Xo X1 X2 X3 X4
g 1.0 A 4
% O
0=
Q
XY 05 E
(9
(1]
: %
0.0 - .
(I) éll é 1I2 1I6 6 éll é 1I2 1I6 (I) lll EI3 1I2 1I6 (I) 4I- é 1I2 1I6 0 4 8 12 16
Time (h)
Zero-shot learning of unseen genotypes
v White-box Black-box Y White-box Black-box
@ 1.0 : C 10X | ]
5 > o 6
M O o v <18 “ 8
m. (@) i (0] (o] (@) | x | ] | o | o .
m 2 02 . , 2% .%l :"8oge °?! Sgege
e ¢ o 0 e ®s0 e T
50.0_000008§$¢c' _ooooogﬁgno' 50_0_§$0+$000000 860880006088
Z I I I I I I Z I I I I T T
100 1072 104 100 107 104 100 107 104 100 1072 104
Ce (NM) C12 (nM)

Possible extensions

e "Grey-box” ODE models could use prescribed sub-models for aspects of the system
that are well understood (qualitatively) and black-box sub-models for aspects less well

understood.

e Extend to stochastic differential equations (replacing equation 2 in the generative
process), which is an important model class in biology.

e Active learning, to provide experimenters with suggestions on how to improve models
of the data, and potentially optimise against a design objective.



