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Binarized Neural Networks



Deep learning

Binarized Neural Networks (BNNs)

BNNs are NNs with binary weights and activations.

Similar performance to standard deep learning.

More efficient (w.r.t. energy and memory) at deploy time.
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How to train BNNs



Supervised learning

Objective

Learn a function that maps inputs to outputs from examples.

5 0 4 1 8 6 2 7 3 9

Example: Digit recognition.
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The binarized perceptron

... ... ...

{-1,1}

n =

{
+1 if

∑
i wi · xi ≥ 0

−1 otherwise
, where wi ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

-1

How can we use the perceptron for digit recognition?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 5 / 42



The binarized perceptron

... ... ...

nj =

{
+1 if

∑
i wij · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n0 =

{
+1 if

∑
i wi0 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42



The binarized perceptron

... ... ...

n1 =

{
+1 if

∑
i wi1 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n2 =

{
+1 if

∑
i wi2 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n3 =

{
+1 if

∑
i wi3 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n4 =

{
+1 if

∑
i wi4 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n5 =
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+1 if

∑
i wi5 · xi ≥ 0
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The binarized perceptron

... ... ...

n6 =

{
+1 if

∑
i wi6 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n7 =

{
+1 if

∑
i wi7 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n8 =

{
+1 if

∑
i wi8 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

n9 =

{
+1 if

∑
i wi9 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.
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The binarized perceptron

... ... ...

Problem: for most training sets, this problem is infeasible.
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(Deep) binarized neural networks

... ... ...
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Formal definition

Any assignment to W defines a function NW : RN0 → {−1, 1}NL :

n0j = xj (first layer).

n`j = 1 if
∑

i wi`j · n(`−1)i ≥ 0; -1 otherwise.

Training a BNN

Given T = {(x1, y1), . . . , (xT , yT )}, find W s.t. NW(xk) ≈ yk ∀k .

How can we train a BNN?

Use gradient descent!
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How to train binarized neural networks

Wait! we cannot compute gradients over discrete weights.

Train over continuous weights and activations.

Binarize the weights and activations during the forward pass.

Use continuous weights and activations in the backward pass.

[To me] It feels like an odd hack to GD... but it works in practice.
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About this work



Main contributions

1. Show that training BNNs is a discrete optimization problem.

2. Propose a MIP, CP, and MIP/CP hybrid model to train BNNs.

3. Run an extensive experimental comparison.

Code: https://bitbucket.org/RToroIcarte/bnn
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Related Work

SAT and MIP have been used for generating adversarial examples
and verifying properties of BNNs:

e.g. Fischetti et al. (2017), Tjeng et al. (2017), Khalil et al. (2018),

Narodytska (2018), Cheng et al. (2018), among others.

To the best of our knowledge, this is the first work that proposes

model-based approaches to train BNNs... but why?

Model-based approaches can find provably optimal solutions, but
they have two (fundamental) issues:

Scalability.

Overfitting.
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Scalability



A rough estimation

AlexNet:

Neurons: 154K (input) – 707K (hidden) – 1K (output).

Weights: 62.3 millions.

ImageNet: 14 million examples.

How many discrete decision variables are needed?
62.3M (weights) + 0.7M× 14M (hidden activations)

≈ 9.89 · 1012 decision variables!
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Fortunately, not all is about big data ;)



Few-shot learning

Challenge: learn a good classifier given limited training data.

Why?
1. Humans learn with far less examples than deep networks.
2. Collecting large amounts of labeled data is expensive

... and sometimes impossible (e.g., healthcare).

E.g., let’s say that we only have access to the following examples:

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!
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Training BNNs: A feasibility perspective

Objective: Find a BNN that fits the data.

Problem definition

Given T = {(x1, y1), . . . , (xT , yT )}, find W s.t. NW(xk) = yk ∀k .

...also known as 100% train performance.

Let’s start by formulating this problem as a MIP model.
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MIP Model

5 0 4 1 8 6 2 7 3 9

... ... ...

Goal: Find W such that NW(xk) = yk for all k ∈ {1 . . .T}.
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MIP Model

... ... ...

∑
i

wij · x0i ≥ 0 j = 5∑
i

wij · x0i < 0 j 6= 5
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MIP Model

... ... ...

∑
i

wij · x1i ≥ 0 j = 0∑
i

wij · x1i < 0 j 6= 0
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MIP Model

wij ∈ {−1, 0, 1} ∀i ∈ N0, j ∈ NL

N0∑
i=1

xki · wij ≥ 0 ∀j ∈ NL, k ∈ T : yk
j = 1

N0∑
i=1

xki · wij ≤ −ε ∀j ∈ NL, k ∈ T : yk
j = −1

What if the BNN has hidden layers?
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MIP Model

... ... ...
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MIP Model

... ... ...
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MIP Model

We need to model the neuron activations using extra variables:

uk`j is 1 if neuron j in layer ` is active given xk ∈ T and 0 o/w.

2 · uk`j − 1 is the neuron’s output.

(uk`j = 1) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≥ 0

(uk`j = 0) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≤ −ε

We need to model w · n using extra variables:

Add variable cki`j to represent wi`j · (2 · uk(`−1)i − 1)

(uk`j = 1) =⇒ (cki`j = wi`j)

(uk`j = 0) =⇒ (cki`j = −wi`j)
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(uk`j = 0) =⇒ (cki`j = −wi`j)
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MIP Model

ak`j =
∑

i∈N`−1

cki`j ∀` ∈ L, j ∈ N`, k ∈ T

akLj ≥ 0 ∀j ∈ NL, k ∈ T : yk
j = 1

akLj ≤ −ε ∀j ∈ NL, k ∈ T : y t
j = −1

(uk`j = 1) =⇒ (ak`j ≥ 0) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (ak`j ≤ −ε) ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki1j = xki · wi1j ∀i ∈ N0, j ∈ N1, k ∈ T

(uk`j = 1) =⇒ (cki`j = wi`j ) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (cki`j = −wi`j ) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N`

uk`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T
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MIP Model

“This model is a nightmare for a MIP solver”
—Andre A. Ciré
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CP model

We do not need auxiliary variables for this problem:

nkLj = yk
j ∀j ∈ NL, k ∈ T

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N`

where nk`j is a CP expression recursively defined as follows:

nk0j = xkj ∀j ∈ N0, k ∈ T

nk`j = 2
(
scal prod(w`j ,n

k
`−1) ≥ 0

)
− 1 ∀` ∈ L \ {L}, j ∈ N`, k ∈ T
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A feasibility experiment

Approaches:

GD: Standard gradient-based approach.

MIP: MIP model solved by Gurobi 8.1

CP: CP model solved by CP Optimizer 12.8

Problem instances:

A 100 small training sets sampled from MNIST.

Each training set has from 1 to 10 examples per class.

Zero, one, and two hidden layers with 16 neurons.

Question:

Which approach solves more instances given a 2h time limit?
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A feasibility experiment

No hidden layers One hidden layer Two hidden layers

|T | MIP GD CP MIP GD CP MIP GD CP

10 10 10 10 10 9.6 10 9 9.2 10
20 10 10 10 7 5.6 10 0 8.4 10
30 10 10 10 0 0.4 9 0 5.2 10
40 10 10 10 0 0 8 0 6.2 10
50 10 10 10 0 0 8 0 4.2 10
60 10 10 10 0 0 7 0 2.2 10
70 10 10 10 0 0 3 0 0 10
80 10 10 10 0 0 3 0 0 10
90 10 10 8 0 0 1 0 0 8

100 10 10 8 0 0 0 0 0 6
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Overfitting



Overfitting

Memorizing is not learning!

The real goal is to find weights that generalize (small testing error).

small training error 6= small testing error
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Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.
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The simplicity principle

Occam’s razor: prefer the simplest BNN that fits the data.

min
W

{∑
w∈W

|w | : NW(x) = y, ∀(x, y) ∈ T , w ∈ {−1, 0, 1}, ∀w ∈W

}
.

(min-weight)
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The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42



The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42



The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

A

B

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42



The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

A

B

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42



An optimality experiment

Approaches:

CPw and CPm: min-weight and max-margin CP models.

MIPw and MIPm: min-weight and max-margin MIP models.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Will MIP or CP find better solutions given a 2h time limit?
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An optimality experiment

No hidden layers One hidden layer Two hidden layers

100 101 102 103
100

101

102

103

MIPw

C
P
w

(a) Min-weight optimization

101 102 103 104 105 106

101

102

103

104

105

106

MIPm

C
P
m

(b) Max-margin optimization
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CP/MIP hybrid methods

Idea: use CP to find feasible solutions and MIP to optimize them.

Option 1: model HW

Use the CP solution as a warm-start for MIP.

Option 2: model HA

Use the CP solution to fix the activations of all neurons in the MIP
model and search only over the weights.
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CP/MIP hybrid methods

“This model is a nightmare for a MIP solver”
—Andre A. Ciré

1. It has (way too) many auxiliary variables:

uk`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T

2. Everywhere I look, I see an implication constraint:

(uk`j = 1) =⇒ (ak`j ≥ 0) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (ak`j ≤ −ε) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 1) =⇒ (cki`j = wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (cki`j = −wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T
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A

B
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Results



A generalization experiment

Approaches:

CPw , CPm, MIPw , and MIPm as before.

HWw and HWm: min-weight and max-margin warm-start CP/MIP.

HAw and HAm: min-weight and max-margin fixed-activation CP/MIP.

GDb and GDt : Two versions of gradient descent.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Which model finds solutions that generalize better within 2h?
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A generalization experiment

Test performance

No hidden layers One hidden layer Two hidden layers

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAw

m
ax
{G
D
b
,G
D
t
}

(c) Min-weight optimization

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAm
m

ax
{G
D
b
,G
D
t
}

(d) Max-margin optimization

HAm outperforms max{GDb, GDt} in 253 out of 300 experiments!
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A generalization experiment

HAm outperforms alternatives by a large margin!
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Concluding remarks

Summary:

Training BNNs is a discrete optimization problem.

We can train BNNs using MIP and CP, but:

Use small datasets.
Optimize some proxy for generalizability.

Our HAm model either outperformed GD or timed out.

Open questions:

How far can model-based approaches scale?

What other proxies for generalization are worth studying?

Are there meaningful ways to combine GD with MIP and CP?

Thanks!
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