
Training Binarized Neural Networks using
MIP and CP

Rodrigo Toro Icarte León Illanes Margarita P. Castro
Andre A. Cire Sheila A. McIlraith J. Christopher Beck

CP 2019
October 4

Binarized Neural Networks

Deep learning

Binarized Neural Networks (BNNs)

BNNs are NNs with binary weights and activations.

Similar performance to standard deep learning.

More efficient (w.r.t. energy and memory) at deploy time.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 2 / 42

Deep learning

Binarized Neural Networks (BNNs)

BNNs are NNs with binary weights and activations.

Similar performance to standard deep learning.

More efficient (w.r.t. energy and memory) at deploy time.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 2 / 42

Deep learning

Binarized Neural Networks (BNNs)

BNNs are NNs with binary weights and activations.

Similar performance to standard deep learning.

More efficient (w.r.t. energy and memory) at deploy time.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 2 / 42

How to train BNNs

Supervised learning

Objective

Learn a function that maps inputs to outputs from examples.

5 0 4 1 8 6 2 7 3 9

Example: Digit recognition.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 4 / 42

Supervised learning

Objective

Learn a function that maps inputs to outputs from examples.

5 0 4 1 8 6 2 7 3 9

Example: Digit recognition.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 4 / 42

The binarized perceptron

...

{-1,1}

n =

{
+1 if

∑
i wi · xi ≥ 0

−1 otherwise
, where wi ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 5 / 42

The binarized perceptron

...

-1

n =

{
+1 if

∑
i wi · xi ≥ 0

−1 otherwise
, where wi ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 5 / 42

The binarized perceptron

...

-1

n =

{
+1 if

∑
i wi · xi ≥ 0

−1 otherwise
, where wi ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 5 / 42

The binarized perceptron

...

+1

n =

{
+1 if

∑
i wi · xi ≥ 0

−1 otherwise
, where wi ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 5 / 42

The binarized perceptron

...

-1

n =

{
+1 if

∑
i wi · xi ≥ 0

−1 otherwise
, where wi ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 5 / 42

The binarized perceptron

...

-1

How can we use the perceptron for digit recognition?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 5 / 42

The binarized perceptron

...

nj =

{
+1 if

∑
i wij · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

nj =

{
+1 if

∑
i wij · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n0 =

{
+1 if

∑
i wi0 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n1 =

{
+1 if

∑
i wi1 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n2 =

{
+1 if

∑
i wi2 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n3 =

{
+1 if

∑
i wi3 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n4 =

{
+1 if

∑
i wi4 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n5 =

{
+1 if

∑
i wi5 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n6 =

{
+1 if

∑
i wi6 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n7 =

{
+1 if

∑
i wi7 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n8 =

{
+1 if

∑
i wi8 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

n9 =

{
+1 if

∑
i wi9 · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

nj =

{
+1 if

∑
i wij · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

nj =

{
+1 if

∑
i wij · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

nj =

{
+1 if

∑
i wij · xi ≥ 0

−1 otherwise
, where wij ∈ {−1, 0, 1}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

The binarized perceptron

...

Problem: for most training sets, this problem is infeasible.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 6 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

(Deep) binarized neural networks

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 7 / 42

Formal definition

Any assignment to W defines a function NW : RN0 → {−1, 1}NL :

n0j = xj (first layer).

n`j = 1 if
∑

i wi`j · n(`−1)i ≥ 0; -1 otherwise.

Training a BNN

Given T = {(x1, y1), . . . , (xT , yT)}, find W s.t. NW(xk) ≈ yk ∀k .

How can we train a BNN?

Use gradient descent!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 8 / 42

Formal definition

Any assignment to W defines a function NW : RN0 → {−1, 1}NL :

n0j = xj (first layer).

n`j = 1 if
∑

i wi`j · n(`−1)i ≥ 0; -1 otherwise.

Training a BNN

Given T = {(x1, y1), . . . , (xT , yT)}, find W s.t. NW(xk) ≈ yk ∀k .

How can we train a BNN?

Use gradient descent!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 8 / 42

Formal definition

Any assignment to W defines a function NW : RN0 → {−1, 1}NL :

n0j = xj (first layer).

n`j = 1 if
∑

i wi`j · n(`−1)i ≥ 0; -1 otherwise.

Training a BNN

Given T = {(x1, y1), . . . , (xT , yT)}, find W s.t. NW(xk) ≈ yk ∀k .

How can we train a BNN?

Use gradient descent!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 8 / 42

Formal definition

Any assignment to W defines a function NW : RN0 → {−1, 1}NL :

n0j = xj (first layer).

n`j = 1 if
∑

i wi`j · n(`−1)i ≥ 0; -1 otherwise.

Training a BNN

Given T = {(x1, y1), . . . , (xT , yT)}, find W s.t. NW(xk) ≈ yk ∀k .

How can we train a BNN?

Use gradient descent!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 8 / 42

How to train binarized neural networks

Wait! we cannot compute gradients over discrete weights.

Train over continuous weights and activations.

Binarize the weights and activations during the forward pass.

Use continuous weights and activations in the backward pass.

[To me] It feels like an odd hack to GD... but it works in practice.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 9 / 42

How to train binarized neural networks

Wait! we cannot compute gradients over discrete weights.

Train over continuous weights and activations.

Binarize the weights and activations during the forward pass.

Use continuous weights and activations in the backward pass.

[To me] It feels like an odd hack to GD... but it works in practice.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 9 / 42

How to train binarized neural networks

Wait! we cannot compute gradients over discrete weights.

Train over continuous weights and activations.

Binarize the weights and activations during the forward pass.

Use continuous weights and activations in the backward pass.

[To me] It feels like an odd hack to GD... but it works in practice.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 9 / 42

About this work

Main contributions

1. Show that training BNNs is a discrete optimization problem.

2. Propose a MIP, CP, and MIP/CP hybrid model to train BNNs.

3. Run an extensive experimental comparison.

Code: https://bitbucket.org/RToroIcarte/bnn

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 11 / 42

Related Work

SAT and MIP have been used for generating adversarial examples
and verifying properties of BNNs:

e.g. Fischetti et al. (2017), Tjeng et al. (2017), Khalil et al. (2018),

Narodytska (2018), Cheng et al. (2018), among others.

To the best of our knowledge, this is the first work that proposes

model-based approaches to train BNNs... but why?

Model-based approaches can find provably optimal solutions, but
they have two (fundamental) issues:

Scalability.

Overfitting.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 12 / 42

Related Work

SAT and MIP have been used for generating adversarial examples
and verifying properties of BNNs:

e.g. Fischetti et al. (2017), Tjeng et al. (2017), Khalil et al. (2018),

Narodytska (2018), Cheng et al. (2018), among others.

To the best of our knowledge, this is the first work that proposes

model-based approaches to train BNNs.

.. but why?

Model-based approaches can find provably optimal solutions, but
they have two (fundamental) issues:

Scalability.

Overfitting.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 12 / 42

Related Work

SAT and MIP have been used for generating adversarial examples
and verifying properties of BNNs:

e.g. Fischetti et al. (2017), Tjeng et al. (2017), Khalil et al. (2018),

Narodytska (2018), Cheng et al. (2018), among others.

To the best of our knowledge, this is the first work that proposes

model-based approaches to train BNNs... but why?

Model-based approaches can find provably optimal solutions, but
they have two (fundamental) issues:

Scalability.

Overfitting.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 12 / 42

Related Work

SAT and MIP have been used for generating adversarial examples
and verifying properties of BNNs:

e.g. Fischetti et al. (2017), Tjeng et al. (2017), Khalil et al. (2018),

Narodytska (2018), Cheng et al. (2018), among others.

To the best of our knowledge, this is the first work that proposes

model-based approaches to train BNNs... but why?

Model-based approaches can find provably optimal solutions

, but
they have two (fundamental) issues:

Scalability.

Overfitting.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 12 / 42

Related Work

SAT and MIP have been used for generating adversarial examples
and verifying properties of BNNs:

e.g. Fischetti et al. (2017), Tjeng et al. (2017), Khalil et al. (2018),

Narodytska (2018), Cheng et al. (2018), among others.

To the best of our knowledge, this is the first work that proposes

model-based approaches to train BNNs... but why?

Model-based approaches can find provably optimal solutions, but
they have two (fundamental) issues:

Scalability.

Overfitting.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 12 / 42

Scalability

A rough estimation

AlexNet:

Neurons: 154K (input) – 707K (hidden) – 1K (output).

Weights: 62.3 millions.

ImageNet: 14 million examples.

How many discrete decision variables are needed?
62.3M (weights) + 0.7M× 14M (hidden activations)

≈ 9.89 · 1012 decision variables!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 14 / 42

A rough estimation

AlexNet:

Neurons: 154K (input) – 707K (hidden) – 1K (output).

Weights: 62.3 millions.

ImageNet: 14 million examples.

How many discrete decision variables are needed?

62.3M (weights) + 0.7M× 14M (hidden activations)
≈ 9.89 · 1012 decision variables!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 14 / 42

A rough estimation

AlexNet:

Neurons: 154K (input) – 707K (hidden) – 1K (output).

Weights: 62.3 millions.

ImageNet: 14 million examples.

How many discrete decision variables are needed?
62.3M (weights)

+ 0.7M× 14M (hidden activations)
≈ 9.89 · 1012 decision variables!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 14 / 42

A rough estimation

AlexNet:

Neurons: 154K (input) – 707K (hidden) – 1K (output).

Weights: 62.3 millions.

ImageNet: 14 million examples.

How many discrete decision variables are needed?
62.3M (weights) + 0.7M× 14M (hidden activations)

≈ 9.89 · 1012 decision variables!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 14 / 42

A rough estimation

AlexNet:

Neurons: 154K (input) – 707K (hidden) – 1K (output).

Weights: 62.3 millions.

ImageNet: 14 million examples.

How many discrete decision variables are needed?
62.3M (weights) + 0.7M× 14M (hidden activations)

≈ 9.89 · 1012 decision variables!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 14 / 42

Fortunately, not all is about big data ;)

Few-shot learning

Challenge: learn a good classifier given limited training data.

Why?
1. Humans learn with far less examples than deep networks.
2. Collecting large amounts of labeled data is expensive

... and sometimes impossible (e.g., healthcare).

E.g., let’s say that we only have access to the following examples:

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 16 / 42

Few-shot learning

Challenge: learn a good classifier given limited training data.

Why?
1. Humans learn with far less examples than deep networks.
2. Collecting large amounts of labeled data is expensive

... and sometimes impossible (e.g., healthcare).

E.g., let’s say that we only have access to the following examples:

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 16 / 42

Few-shot learning

Challenge: learn a good classifier given limited training data.

Why?
1. Humans learn with far less examples than deep networks.
2. Collecting large amounts of labeled data is expensive

... and sometimes impossible (e.g., healthcare).

E.g., let’s say that we only have access to the following examples:

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 16 / 42

Few-shot learning

Challenge: learn a good classifier given limited training data.

Why?
1. Humans learn with far less examples than deep networks.
2. Collecting large amounts of labeled data is expensive

... and sometimes impossible (e.g., healthcare).

E.g., let’s say that we only have access to the following examples:

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 16 / 42

Few-shot learning

Challenge: learn a good classifier given limited training data.

Why?
1. Humans learn with far less examples than deep networks.
2. Collecting large amounts of labeled data is expensive

... and sometimes impossible (e.g., healthcare).

E.g., let’s say that we only have access to the following examples:

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 16 / 42

Training BNNs: A feasibility perspective

Objective: Find a BNN that fits the data.

Problem definition

Given T = {(x1, y1), . . . , (xT , yT)}, find W s.t. NW(xk) = yk ∀k .

...also known as 100% train performance.

Let’s start by formulating this problem as a MIP model.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 17 / 42

Training BNNs: A feasibility perspective

Objective: Find a BNN that fits the data.

Problem definition

Given T = {(x1, y1), . . . , (xT , yT)}, find W s.t. NW(xk) = yk ∀k .

...also known as 100% train performance.

Let’s start by formulating this problem as a MIP model.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 17 / 42

Training BNNs: A feasibility perspective

Objective: Find a BNN that fits the data.

Problem definition

Given T = {(x1, y1), . . . , (xT , yT)}, find W s.t. NW(xk) = yk ∀k .

...also known as 100% train performance.

Let’s start by formulating this problem as a MIP model.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 17 / 42

MIP Model

5 0 4 1 8 6 2 7 3 9

...

Goal: Find W such that NW(xk) = yk for all k ∈ {1 . . .T}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 18 / 42

MIP Model

5 0 4 1 8 6 2 7 3 9

...

Goal: Find W such that NW(xk) = yk for all k ∈ {1 . . .T}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 18 / 42

MIP Model

5 0 4 1 8 6 2 7 3 9

...

Goal: Find W such that NW(xk) = yk for all k ∈ {1 . . .T}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 18 / 42

MIP Model

...

Goal: Find W such that NW(xk) = yk for all k ∈ {1 . . .T}.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 18 / 42

MIP Model

...

∑
i

wij · x0i ≥ 0 j = 5∑
i

wij · x0i < 0 j 6= 5

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 18 / 42

MIP Model

...

∑
i

wij · x1i ≥ 0 j = 0∑
i

wij · x1i < 0 j 6= 0

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 18 / 42

MIP Model

wij ∈ {−1, 0, 1} ∀i ∈ N0, j ∈ NL

N0∑
i=1

xki · wij ≥ 0 ∀j ∈ NL, k ∈ T : yk
j = 1

N0∑
i=1

xki · wij ≤ −ε ∀j ∈ NL, k ∈ T : yk
j = −1

What if the BNN has hidden layers?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 19 / 42

MIP Model

wij ∈ {−1, 0, 1} ∀i ∈ N0, j ∈ NL

N0∑
i=1

xki · wij ≥ 0 ∀j ∈ NL, k ∈ T : yk
j = 1

N0∑
i=1

xki · wij ≤ −ε ∀j ∈ NL, k ∈ T : yk
j = −1

What if the BNN has hidden layers?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 19 / 42

MIP Model

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 20 / 42

MIP Model

...

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 20 / 42

MIP Model

We need to model the neuron activations using extra variables:

uk`j is 1 if neuron j in layer ` is active given xk ∈ T and 0 o/w.

2 · uk`j − 1 is the neuron’s output.

(uk`j = 1) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≥ 0

(uk`j = 0) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≤ −ε

We need to model w · n using extra variables:

Add variable cki`j to represent wi`j · (2 · uk(`−1)i − 1)

(uk`j = 1) =⇒ (cki`j = wi`j)

(uk`j = 0) =⇒ (cki`j = −wi`j)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 21 / 42

MIP Model

We need to model the neuron activations using extra variables:

uk`j is 1 if neuron j in layer ` is active given xk ∈ T and 0 o/w.

2 · uk`j − 1 is the neuron’s output.

(uk`j = 1) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≥ 0

(uk`j = 0) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≤ −ε

We need to model w · n using extra variables:

Add variable cki`j to represent wi`j · (2 · uk(`−1)i − 1)

(uk`j = 1) =⇒ (cki`j = wi`j)

(uk`j = 0) =⇒ (cki`j = −wi`j)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 21 / 42

MIP Model

We need to model the neuron activations using extra variables:

uk`j is 1 if neuron j in layer ` is active given xk ∈ T and 0 o/w.

2 · uk`j − 1 is the neuron’s output.

(uk`j = 1) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≥ 0

(uk`j = 0) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≤ −ε

We need to model w · n using extra variables:

Add variable cki`j to represent wi`j · (2 · uk(`−1)i − 1)

(uk`j = 1) =⇒ (cki`j = wi`j)

(uk`j = 0) =⇒ (cki`j = −wi`j)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 21 / 42

MIP Model

We need to model the neuron activations using extra variables:

uk`j is 1 if neuron j in layer ` is active given xk ∈ T and 0 o/w.

2 · uk`j − 1 is the neuron’s output.

(uk`j = 1) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≥ 0

(uk`j = 0) =⇒
∑

i∈N`−1
wi`j · (2 · uk(`−1)i − 1) ≤ −ε

We need to model w · n using extra variables:

Add variable cki`j to represent wi`j · (2 · uk(`−1)i − 1)

(uk`j = 1) =⇒ (cki`j = wi`j)

(uk`j = 0) =⇒ (cki`j = −wi`j)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 21 / 42

MIP Model

ak`j =
∑

i∈N`−1

cki`j ∀` ∈ L, j ∈ N`, k ∈ T

akLj ≥ 0 ∀j ∈ NL, k ∈ T : yk
j = 1

akLj ≤ −ε ∀j ∈ NL, k ∈ T : y t
j = −1

(uk`j = 1) =⇒ (ak`j ≥ 0) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (ak`j ≤ −ε) ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki1j = xki · wi1j ∀i ∈ N0, j ∈ N1, k ∈ T

(uk`j = 1) =⇒ (cki`j = wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (cki`j = −wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N`

uk`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 22 / 42

MIP Model

“This model is a nightmare for a MIP solver”
—Andre A. Ciré

1. It has (way too) many auxiliary variables:

uk`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T

2. Everywhere I look, I see an implication constraint:

(uk`j = 1) =⇒ (ak`j ≥ 0) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (ak`j ≤ −ε) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 1) =⇒ (cki`j = wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (cki`j = −wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 23 / 42

MIP Model

“This model is a nightmare for a MIP solver”
—Andre A. Ciré

1. It has (way too) many auxiliary variables:

uk`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T

2. Everywhere I look, I see an implication constraint:

(uk`j = 1) =⇒ (ak`j ≥ 0) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (ak`j ≤ −ε) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 1) =⇒ (cki`j = wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (cki`j = −wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 23 / 42

MIP Model

“This model is a nightmare for a MIP solver”
—Andre A. Ciré

1. It has (way too) many auxiliary variables:

uk`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T

2. Everywhere I look, I see an implication constraint:

(uk`j = 1) =⇒ (ak`j ≥ 0) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (ak`j ≤ −ε) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 1) =⇒ (cki`j = wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (cki`j = −wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 23 / 42

CP model

We do not need auxiliary variables for this problem:

nkLj = yk
j ∀j ∈ NL, k ∈ T

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N`

where nk`j is a CP expression recursively defined as follows:

nk0j = xkj ∀j ∈ N0, k ∈ T

nk`j = 2
(
scal prod(w`j ,n

k
`−1) ≥ 0

)
− 1 ∀` ∈ L \ {L}, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 24 / 42

CP model

We do not need auxiliary variables for this problem:

nkLj = yk
j ∀j ∈ NL, k ∈ T

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N`

where nk`j is a CP expression recursively defined as follows:

nk0j = xkj ∀j ∈ N0, k ∈ T

nk`j = 2
(
scal prod(w`j ,n

k
`−1) ≥ 0

)
− 1 ∀` ∈ L \ {L}, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 24 / 42

CP model

We do not need auxiliary variables for this problem:

nkLj = yk
j ∀j ∈ NL, k ∈ T

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N`

where nk`j is a CP expression recursively defined as follows:

nk0j = xkj ∀j ∈ N0, k ∈ T

nk`j = 2
(
scal prod(w`j ,n

k
`−1) ≥ 0

)
− 1 ∀` ∈ L \ {L}, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 24 / 42

CP model

We do not need auxiliary variables for this problem:

nkLj = yk
j ∀j ∈ NL, k ∈ T

wi`j ∈ {−1, 0, 1} ∀` ∈ L, i ∈ N`−1, j ∈ N`

where nk`j is a CP expression recursively defined as follows:

nk0j = xkj ∀j ∈ N0, k ∈ T

nk`j = 2
(
scal prod(w`j ,n

k
`−1) ≥ 0

)
− 1 ∀` ∈ L \ {L}, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 24 / 42

A feasibility experiment

Approaches:

GD: Standard gradient-based approach.

MIP: MIP model solved by Gurobi 8.1

CP: CP model solved by CP Optimizer 12.8

Problem instances:

A 100 small training sets sampled from MNIST.

Each training set has from 1 to 10 examples per class.

Zero, one, and two hidden layers with 16 neurons.

Question:

Which approach solves more instances given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 25 / 42

A feasibility experiment

Approaches:

GD: Standard gradient-based approach.

MIP: MIP model solved by Gurobi 8.1

CP: CP model solved by CP Optimizer 12.8

Problem instances:

A 100 small training sets sampled from MNIST.

Each training set has from 1 to 10 examples per class.

Zero, one, and two hidden layers with 16 neurons.

Question:

Which approach solves more instances given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 25 / 42

A feasibility experiment

Approaches:

GD: Standard gradient-based approach.

MIP: MIP model solved by Gurobi 8.1

CP: CP model solved by CP Optimizer 12.8

Problem instances:

A 100 small training sets sampled from MNIST.

Each training set has from 1 to 10 examples per class.

Zero, one, and two hidden layers with 16 neurons.

Question:

Which approach solves more instances given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 25 / 42

A feasibility experiment

Approaches:

GD: Standard gradient-based approach.

MIP: MIP model solved by Gurobi 8.1

CP: CP model solved by CP Optimizer 12.8

Problem instances:

A 100 small training sets sampled from MNIST.

Each training set has from 1 to 10 examples per class.

Zero, one, and two hidden layers with 16 neurons.

Question:

Which approach solves more instances given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 25 / 42

A feasibility experiment

No hidden layers One hidden layer Two hidden layers

|T | MIP GD CP MIP GD CP MIP GD CP

10 10 10 10 10 9.6 10 9 9.2 10
20 10 10 10 7 5.6 10 0 8.4 10
30 10 10 10 0 0.4 9 0 5.2 10
40 10 10 10 0 0 8 0 6.2 10
50 10 10 10 0 0 8 0 4.2 10
60 10 10 10 0 0 7 0 2.2 10
70 10 10 10 0 0 3 0 0 10
80 10 10 10 0 0 3 0 0 10
90 10 10 8 0 0 1 0 0 8

100 10 10 8 0 0 0 0 0 6

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 26 / 42

Overfitting

Overfitting

Memorizing is not learning!

The real goal is to find weights that generalize (small testing error).

small training error 6= small testing error

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 28 / 42

Overfitting

Memorizing is not learning!

The real goal is to find weights that generalize (small testing error).

small training error 6= small testing error

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 28 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

?

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

Towards finding solutions that generalize

5 0 4 1 8 6 2 7 3 9

We better classify them correctly!

?

While most solutions overfit
... some generalize.

How can we identify them?

Two principles: simplicity & robustness.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 29 / 42

The simplicity principle

Occam’s razor: prefer the simplest BNN that fits the data.

min
W

{∑
w∈W

|w | : NW(x) = y, ∀(x, y) ∈ T , w ∈ {−1, 0, 1}, ∀w ∈W

}
.

(min-weight)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 30 / 42

The simplicity principle

Occam’s razor: prefer the simplest BNN that fits the data.

min
W

{∑
w∈W

|w | : NW(x) = y, ∀(x, y) ∈ T , w ∈ {−1, 0, 1}, ∀w ∈W

}
.

(min-weight)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 30 / 42

The simplicity principle

Occam’s razor: prefer the simplest BNN that fits the data.

min
W

{∑
w∈W

|w | : NW(x) = y, ∀(x, y) ∈ T , w ∈ {−1, 0, 1}, ∀w ∈W

}
.

(min-weight)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 30 / 42

The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42

The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42

The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

A

B

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42

The robustness principle

Prefer robust solutions

BNNs that fit the data under small perturbations to their weights.

A

B

max
W

∑
`∈L,j∈N`

min{|a`j(x)| : (x, y) ∈ T }

s.t. NW(x) = y ∀(x, y) ∈ T
w ∈ {−1, 0, 1} ∀w ∈W

(max-margin)

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 31 / 42

An optimality experiment

Approaches:

CPw and CPm: min-weight and max-margin CP models.

MIPw and MIPm: min-weight and max-margin MIP models.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Will MIP or CP find better solutions given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 32 / 42

An optimality experiment

Approaches:

CPw and CPm: min-weight and max-margin CP models.

MIPw and MIPm: min-weight and max-margin MIP models.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Will MIP or CP find better solutions given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 32 / 42

An optimality experiment

Approaches:

CPw and CPm: min-weight and max-margin CP models.

MIPw and MIPm: min-weight and max-margin MIP models.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Will MIP or CP find better solutions given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 32 / 42

An optimality experiment

Approaches:

CPw and CPm: min-weight and max-margin CP models.

MIPw and MIPm: min-weight and max-margin MIP models.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Will MIP or CP find better solutions given a 2h time limit?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 32 / 42

An optimality experiment

No hidden layers One hidden layer Two hidden layers

100 101 102 103
100

101

102

103

MIPw

C
P
w

(a) Min-weight optimization

101 102 103 104 105 106

101

102

103

104

105

106

MIPm

C
P
m

(b) Max-margin optimization

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 33 / 42

CP/MIP hybrid methods

Idea: use CP to find feasible solutions and MIP to optimize them.

Option 1: model HW

Use the CP solution as a warm-start for MIP.

Option 2: model HA

Use the CP solution to fix the activations of all neurons in the MIP
model and search only over the weights.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 34 / 42

CP/MIP hybrid methods

Idea: use CP to find feasible solutions and MIP to optimize them.

Option 1: model HW

Use the CP solution as a warm-start for MIP.

Option 2: model HA

Use the CP solution to fix the activations of all neurons in the MIP
model and search only over the weights.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 34 / 42

CP/MIP hybrid methods

Idea: use CP to find feasible solutions and MIP to optimize them.

Option 1: model HW

Use the CP solution as a warm-start for MIP.

Option 2: model HA

Use the CP solution to fix the activations of all neurons in the MIP
model and search only over the weights.

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 34 / 42

CP/MIP hybrid methods

“This model is a nightmare for a MIP solver”
—Andre A. Ciré

1. It has (way too) many auxiliary variables:

uk`j ∈ {0, 1} ∀` ∈ LL−1, j ∈ N`, k ∈ T

cki`j ∈ R ∀` ∈ L, i ∈ N`−1, j ∈ N`, k ∈ T

2. Everywhere I look, I see an implication constraint:

(uk`j = 1) =⇒ (ak`j ≥ 0) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (ak`j ≤ −ε) ∀` ∈ LL−1, j ∈ N`, k ∈ T

(uk`j = 1) =⇒ (cki`j = wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

(uk`j = 0) =⇒ (cki`j = −wi`j) ∀` ∈ L2, i ∈ N`−1, j ∈ N`, k ∈ T

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 35 / 42

CP/MIP hybrid methods

A

B

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 36 / 42

CP/MIP hybrid methods

CP

A

B

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 36 / 42

CP/MIP hybrid methods

CP

HW

A

B

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 36 / 42

CP/MIP hybrid methods

HA

CP

HW

A

B

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 36 / 42

CP/MIP hybrid methods

HA

CP

HW

A

B

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 36 / 42

Results

A generalization experiment

Approaches:

CPw , CPm, MIPw , and MIPm as before.

HWw and HWm: min-weight and max-margin warm-start CP/MIP.

HAw and HAm: min-weight and max-margin fixed-activation CP/MIP.

GDb and GDt : Two versions of gradient descent.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Which model finds solutions that generalize better within 2h?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 38 / 42

A generalization experiment

Approaches:

CPw , CPm, MIPw , and MIPm as before.

HWw and HWm: min-weight and max-margin warm-start CP/MIP.

HAw and HAm: min-weight and max-margin fixed-activation CP/MIP.

GDb and GDt : Two versions of gradient descent.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Which model finds solutions that generalize better within 2h?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 38 / 42

A generalization experiment

Approaches:

CPw , CPm, MIPw , and MIPm as before.

HWw and HWm: min-weight and max-margin warm-start CP/MIP.

HAw and HAm: min-weight and max-margin fixed-activation CP/MIP.

GDb and GDt : Two versions of gradient descent.

Problem instances:

Same 100 instances using 0, 1, or 2 hidden layers.

Question:

Which model finds solutions that generalize better within 2h?

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 38 / 42

A generalization experiment

Test performance

No hidden layers One hidden layer Two hidden layers

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAw

m
ax
{G
D
b
,G
D
t
}

(c) Min-weight optimization

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAm
m

ax
{G
D
b
,G
D
t
}

(d) Max-margin optimization

HAm outperforms max{GDb, GDt} in 253 out of 300 experiments!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 39 / 42

A generalization experiment

Test performance

No hidden layers One hidden layer Two hidden layers

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAw

m
ax
{G
D
b
,G
D
t
}

(e) Min-weight optimization

0 0.2 0.4 0.6
0

0.2

0.4

0.6

HAm
m

ax
{G
D
b
,G
D
t
}

(f) Max-margin optimization

HAm outperforms max{GDb, GDt} in 253 out of 300 experiments!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 39 / 42

A generalization experiment

HAm outperforms alternatives by a large margin!

10 50 90
0

0.2

0.4

0.6

Examples

T
es
t
P
er
fo
rm

a
n
ce

(g) 2 HL, min-weight

10 50 90
0

0.2

0.4

0.6

Examples

T
es
t
P
er
fo
rm

a
n
ce

(h) 2 HL, max-margin

CP MIP HW HA GDb GDt

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 40 / 42

A generalization experiment

HAm outperforms alternatives by a large margin!

10 50 90
0

0.2

0.4

0.6

Examples

T
es
t
P
er
fo
rm

a
n
ce

(i) 2 HL, min-weight

10 50 90
0

0.2

0.4

0.6

Examples

T
es
t
P
er
fo
rm

a
n
ce

(j) 2 HL, max-margin

CP MIP HW HA GDb GDt

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 40 / 42

Concluding remarks

Concluding remarks

Summary:

Training BNNs is a discrete optimization problem.

We can train BNNs using MIP and CP, but:

Use small datasets.
Optimize some proxy for generalizability.

Our HAm model either outperformed GD or timed out.

Open questions:

How far can model-based approaches scale?

What other proxies for generalization are worth studying?

Are there meaningful ways to combine GD with MIP and CP?

Thanks!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 42 / 42

Concluding remarks

Summary:

Training BNNs is a discrete optimization problem.

We can train BNNs using MIP and CP, but:

Use small datasets.
Optimize some proxy for generalizability.

Our HAm model either outperformed GD or timed out.

Open questions:

How far can model-based approaches scale?

What other proxies for generalization are worth studying?

Are there meaningful ways to combine GD with MIP and CP?

Thanks!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 42 / 42

Concluding remarks

Summary:

Training BNNs is a discrete optimization problem.

We can train BNNs using MIP and CP, but:

Use small datasets.
Optimize some proxy for generalizability.

Our HAm model either outperformed GD or timed out.

Open questions:

How far can model-based approaches scale?

What other proxies for generalization are worth studying?

Are there meaningful ways to combine GD with MIP and CP?

Thanks!

Toro Icarte et al: Training Binarized Neural Networks using MIP and CP 42 / 42

