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What is a
Reward Machine (RM)?

9

*Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning
by Toro Icarte et al. (ICML, 2018)
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... that allow for learning policies faster.
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... but the RMs were handcrafted.
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Learning Reward Machines for Partially Observable RL

This work:
Shows how to learn RMs from experiences (LRM).
Uses RMs as memory for partially observable RL.
Extends QRM to work under partial observability.
Provides a theoretical and empirical analysis of LRM.
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Partially Observable RL

The most popular approach:

Training LSTMs policies using a policy gradient method.
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The most popular approach:
Training LSTMs policies using a policy gradient method.

. starves in the cookie domain.

200 Legend:
| 1150 —— Optimal
S| 100 — ACER
qu A3C
- 150 — PPO
ettt — DDQN

1-10°  3-10°  5-10°
Training steps



RMs as memory



Reward Machines as memory

If the agent can detect the color of the rooms (O, L, O, ),



Reward Machines as memory

If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (O),



Reward Machines as memory

If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (O), eats a cookie (©),



Reward Machines as memory

If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (©), eats a cookie (&), and sees a cookie (@),
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If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (O), eats a cookie (&), and sees a cookie (@), then:

{o/w,0) (,0); (o/w,0) (B,0); (o/w,0)

{o/w,0)

... becomes a “perfect” memory for the cookie domain.
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{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

Why is this a perfect memory?

m*(alog, -, 0¢) = w*(a|os, us)

Hard problem RM, Easy problem
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Given a set of detectors (e.g., {0,0,0,0,0,®,>}) and traces T, learning RMs is a
discrete optimization problem:

N log(IN.. 1 LRM
RS gy et -
s.t. (U, ug, 8u,8,) € Rp 1)

|U| < Umax (2)

xie €U viel,te T;u{t} (3)

Xi0 = U viel (4)

Xi,t41 = Ou(Xit, L(ej,t41)) Viel,teT; (5)

N, C 22" Vue U, le2P (6)
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... that we solved using Tabu Search.



Overall approach

(Add extra traces if the RM is imperfect)

\ I

Collect 3 Optimization 3 Proposed 3 RL agent
Traces Model RM ~ my(alo, u)
Eelj Tabu (o/w.0) (8,0); (o/w.0) 1) DDQN
| Search @e.0 2) DQRM

] @e,1) @e,1)

(many traces!)
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*Note: The detectors were also given to the baselines.



Discussion at poster #210

https://bitbucket.org/RTorolcarte/lrm

Thanks! :)

Rodrigo Ethan Toryn Rick Margarita Sheila



