Learning Reward Machines for Partially Observable

Reinforcement Learning

Toryn Q. Klassen Richard Valenzano

Rodrigo Toro Icarte Ethan Waldie
Sheila A. Mcllraith

Margarita P. Castro

UNIVERSITY OF

' TORONTO
ELEMENT®

NeurlPS 2019
December 11

7\ VECTOR
INSTITUTE

What is a
Reward Machine (RM)?

9

*Using Reward Machines for High-Level Task Specification and Decomposition in Reinforcement Learning
by Toro Icarte et al. (ICML, 2018)

Reward Machines (RMs)

RMs are automata-based reward functions:

Reward Machines (RMs)

RMs are automata-based reward functions:

(=A,0)
ilm = 0 # global variable
2| def get_reward(s):
3 if m == 0 and s.at("A"):
4 m =1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"): (-B.0)
8 m = 3
9 if m == 3 and s.at("D"):
10 m = 0
11 return 1
12 return O
<“C70>

Reward Machines (RMs)

RMs are automata-based reward functions:

(=A,0)
ilm = 0 # global variable
2| def get_reward(s):
3 if m == 0 and s.at("A"):
4 m =1
5 if m == 1 and s.at("B"):
6 m = 2
7 if m == 2 and s.at("C"): (-B.0)
8 m = 3
9 if m == 3 and s.at("D"):
10 m = 0
11 return 1
12 return O
<“C70>

... that allow for learning policies faster.

Reward Machines (RMs)

Water World
'87 T T T 71
g |
E 0.8 Legend:
=1 los —— DQRM (ours)
g | ' —— DHRL-RM
E* o T 0.4 DHRL
i — DDQN
£ 102
=]
“ e PN

y - - 0)
5.10° 1-10° 1.5-10% 2.10°
Number of training steps

Reward Machines (RMs)

Water World
'8’ T T T 71
e |
E 0.8 Legend:
£l los —— DQRM (ours)
g | ' —— DHRL-RM
5| i 04 DHRL
S — DDQN
£ - 102
=]
“ st s AN

y - - 0)
5.10° 1-10° 1.5-10% 2.10°
Number of training steps

... but the RMs were handcrafted.

Learning Reward Machines for Partially Observable RL

This work:
Shows how to learn RMs from experiences (LRM).

Learning Reward Machines for Partially Observable RL

This work:
Shows how to learn RMs from experiences (LRM).
Uses RMs as memory for partially observable RL.

Learning Reward Machines for Partially Observable RL

This work:
Shows how to learn RMs from experiences (LRM).
Uses RMs as memory for partially observable RL.
Extends QRM to work under partial observability.

Learning Reward Machines for Partially Observable RL

This work:
Shows how to learn RMs from experiences (LRM).
Uses RMs as memory for partially observable RL.
Extends QRM to work under partial observability.
Provides a theoretical and empirical analysis of LRM.

The Cookie Domain

The cookie domain

o

The cookie domain

o

Agent

The cookie domain

O <€== Button

The cookie domain

A

—

(Cookie)

The cookie domain

The cookie domain

. - .

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

. - .

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

A

The cookie domain

(+1 Reward)

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

The cookie domain

>

Solving the cookie domain requires memory!

The cookie domain

>

Solving the cookie domain requires memory!

w*(alot) # 7*(alog, - - - , 0t)

Partially Observable RL

The most popular approach:

Training LSTMs policies using a policy gradient method.

Partially Observable RL

The most popular approach:
Training LSTMs policies using a policy gradient method.

. starves in the cookie domain.

200 Legend:
| 1150 —— Optimal
S| 100 — ACER
qu A3C
- 150 — PPO
ettt — DDQN

1-10° 3-10° 5-10°
Training steps

RMs as memory

Reward Machines as memory

If the agent can detect the color of the rooms (O, L, O,),

Reward Machines as memory

If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (O),

Reward Machines as memory

If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (O), eats a cookie (©),

Reward Machines as memory

If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (©), eats a cookie (&), and sees a cookie (@),

Reward Machines as memory

If the agent can detect the color of the rooms (O, 1, M, 1), and when it presses the
button (O), eats a cookie (&), and sees a cookie (@), then:

{o/w,0) (,0); (o/w,0) (B,0); (o/w,0)

{o/w,0)

... becomes a “perfect” memory for the cookie domain.

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if (JO) — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

. - .

conditions at state ug

if (JO) — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

. - .
conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

A
. . @e,1) @,

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if JO) — goto g
else — goto ug

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state uy

if ord®) — goto w
if Dord@®) — goto us
else — goto u;

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (I,0); (o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE@®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (I,0); (o/w,0)

conditions at state uy
if [or@®) — goto w
if (orE@®) — gotous
else — goto

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state uy
if [or@®) — goto w
if Jor@®) — goto us
else — goto u;

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); {(o/w,0)

conditions at state u3

if @®) — goto
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

A @

conditions at state u3

if @®) — goto u
else — goto u3

Reward Machines as memory

(o/w.0) (E,0); {o/w.0) (B,0); (o/w,0)

conditions at state u3

if ®) — goto u
else — goto u3

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if (JO) — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

conditions at state ug

if O® — gotow
else — goto g

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

Why is this a perfect memory?

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

Why is this a perfect memory?

m*(alog, -, 0¢) = w*(a|os, us)

Reward Machines as memory

{o/w,0) (O,0); (o/w,0) (H,0); (o/w,0)

Why is this a perfect memory?

m*(alog, -, 0¢) = w*(a|os, us)

Hard problem RM, Easy problem

How to learn such RMs?

Learning Reward Machines

Given a set of detectors (e.g., {0,0,E,00,0,®,>}) and traces T,

Learning Reward Machines

Given a set of detectors (e.g., {0,0,0,0,0,®,>}) and traces T, learning RMs is a
discrete optimization problem:

Learning Reward Machines

Given a set of detectors (e.g., {0,0,0,0,0,®,>}) and traces T, learning RMs is a
discrete optimization problem:

inimi | N.,. . LRM
RS gy et -
s.t. <U, U076u7§r> ER'P (1)

|U| < Umax (2)

xie €U viel,te T;u{t} (3)

Xi0 = U viel (4)

Xie+1 = Ou(Xi ¢, L(€j t41)) viel,teT: (5)

N, C 22" Vue U, le2P (6)

L(eitr1) € Ny . 1(er,0) VielteT; (7)

Learning Reward Machines

Given a set of detectors (e.g., {0,0,0,0,0,®,>}) and traces T, learning RMs is a
discrete optimization problem:

- oe(IN.. 1. LRM
DA & 2 gt al) -

s.t. YMTo,0u,0r) € Rp (1)

|U| < Umax (2)

Learn a xit €U viel,t€ T;Uu{t} (3)
“simple” Xi.0 = to viel (4)
causal model Xit+1 = Ou(Xi ¢, L(ei t11)) viel,teT; (5)
N, C 22" Vue U, le2P (6)

L(eitr1) € Ny . 1(er,0) VielteT; (7)

Learning Reward Machines

Given a set of detectors (e.g., {0,0,0,0,0,®,>}) and traces T, learning RMs is a
discrete optimization problem:

N log(IN.. 1 LRM
RS gy et -
s.t. (U, ug, 8u,8,) € Rp 1)

|U| < Umax (2)

xie €U viel,te T;u{t} (3)

Xi0 = U viel (4)

Xi,t41 = Ou(Xit, L(ej,t41)) Viel,teT; (5)

N, C 22" Vue U, le2P (6)

L(ei,t+1) € Nx,-)t,L(e,-yt) viel,teT; (7)

... that we solved using Tabu Search.

Overall approach

(Add extra traces if the RM is imperfect)

\ I

Collect 3 Optimization 3 Proposed 3 RL agent
Traces Model RM ~ my(alo, u)
Eelj Tabu (o/w.0) (8,0); (o/w.0) 1) DDQN
| Search @e.0 2) DQRM

] @e,1) @e,1)

(many traces!)

Results

Cookie domain Two keys domain

—— Optimal
— LRM+DQRM
— LRM+DDQN
— ACER

A3C
— PPO
— DDQN

Rewarq

0 1-105 2.100 3-10°
Training steps Training steps

*Note: The detectors were also given to the baselines.

Discussion at poster #210

https://bitbucket.org/RTorolcarte/lrm

Thanks! :)

Rodrigo Ethan Toryn Rick Margarita Sheila

