Learning Reward Machines for Partially Observable Reinforcement Learning

Rodrigo Toro Icarte Ethan Waldie Toryn Q. Klassen Richard Valenzano Margarita P. Castro Sheila A. McIlraith

ELEMENTAL

NeurIPS 2019
December 11

What is a Reward Machine (RM)?

RMs are automata-based reward functions:

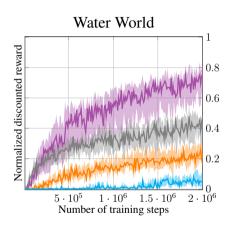
RMs are automata-based reward functions:

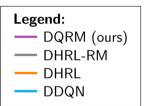
```
\langle \neg A, 0 \rangle
   m = 0 \# global variable
 def get_reward(s):
       if m == 0 and s.at("A"):
                                                                                      \langle \mathsf{D}, \mathsf{1} \rangle
                                                                                                          \langle A, 0 \rangle
       if m == 1 and s.at("B"):
       if m == 2 and s.at("C"):
                                                                                       \langle C, 0 \rangle
                                                                                                           \langle B, 0 \rangle
       if m == 3 and s.at("D"):
10
          return 1
11
       return 0
                                                                                                \langle \neg C, 0 \rangle
```

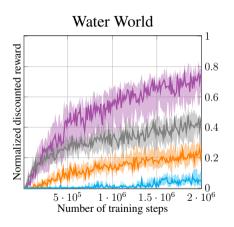
RMs are automata-based reward functions:

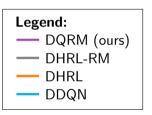
```
\langle \neg A, 0 \rangle
      = 0 # global variable
   def get_reward(s):
       if m == 0 and s.at("A"):
                                                                                        \langle \mathsf{D}, \mathsf{1} \rangle
                                                                                                            \langle A, 0 \rangle
       if m == 1 and s.at("B"):
       if m == 2 and s.at("C"):
                                                                                        \langle C, 0 \rangle
                                                                                                            \langle B, 0 \rangle
       if m == 3 and s.at("D"):
10
          return 1
11
       return 0
12
                                                                                                  \langle \neg C, 0 \rangle
```

... that allow for learning policies faster.









... but the RMs were **handcrafted**.

This work:

1 Shows how to learn RMs from experiences (LRM).

This work:

- 1 Shows how to learn RMs from experiences (LRM).
- 2 Uses RMs as memory for partially observable RL.

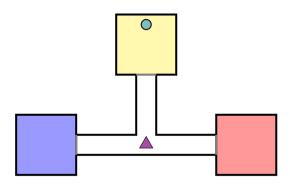
This work:

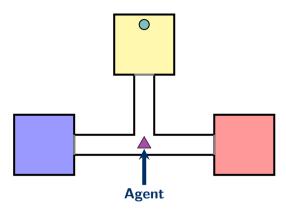
- 1 Shows how to learn RMs from experiences (LRM).
- Uses RMs as memory for partially observable RL.
- 3 Extends QRM to work under partial observability.

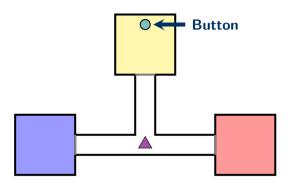
This work:

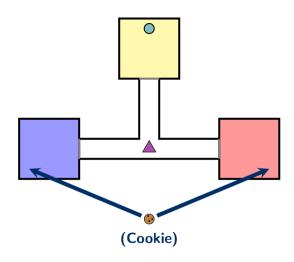
- 1 Shows how to learn RMs from experiences (LRM).
- Uses RMs as memory for partially observable RL.
- **3** Extends QRM to work under partial observability.
- 4 Provides a theoretical and empirical analysis of LRM.

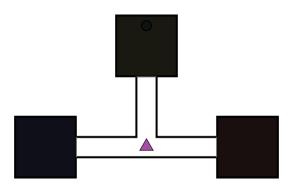
The Cookie Domain

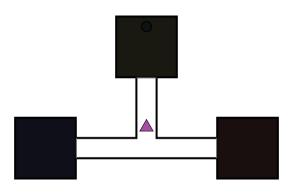


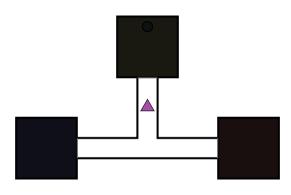


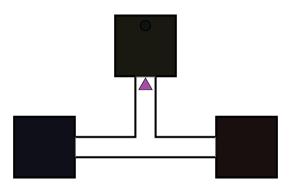


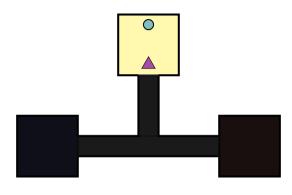


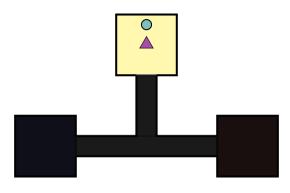


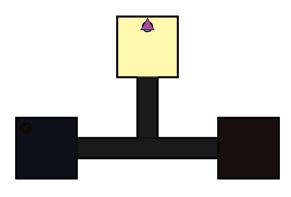


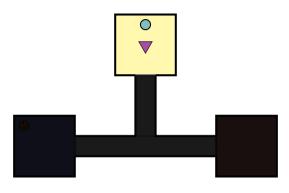


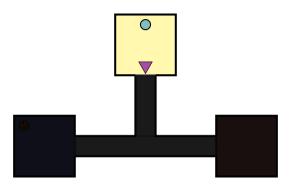


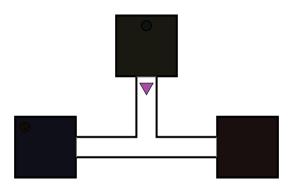


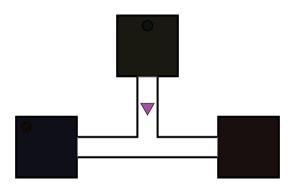


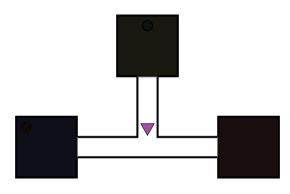


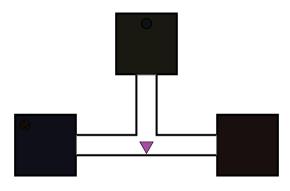


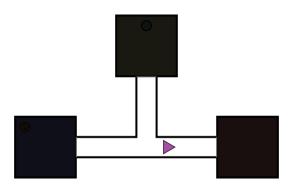


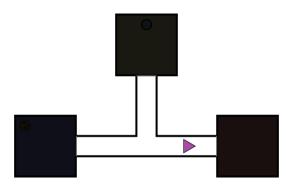


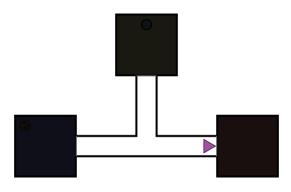


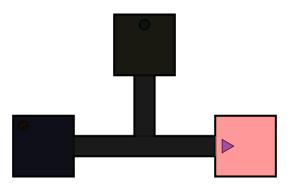


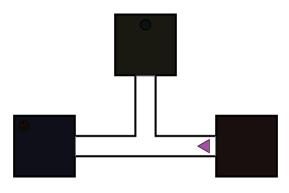


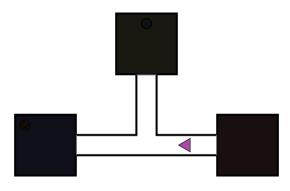


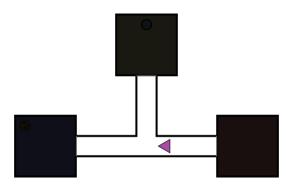


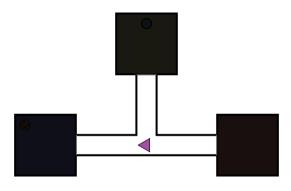


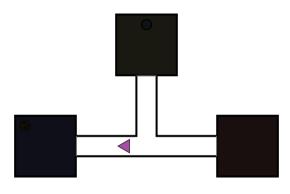


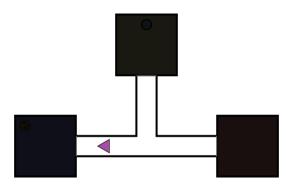


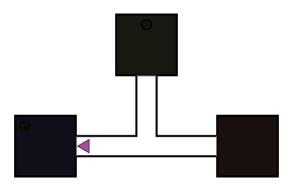


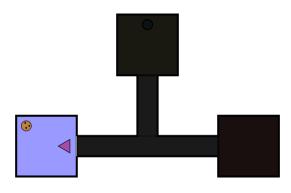


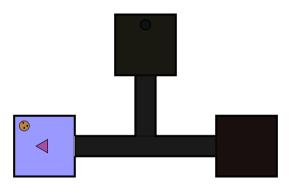


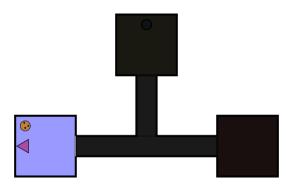


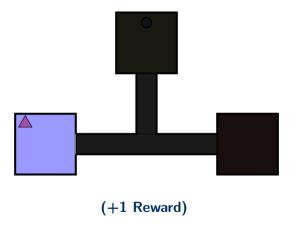


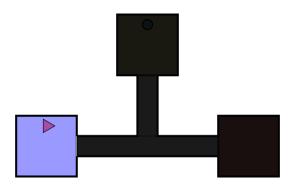


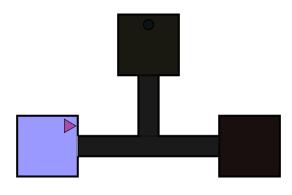


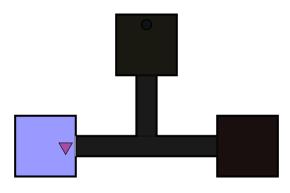


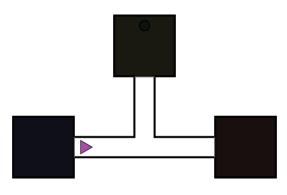


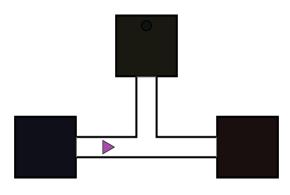


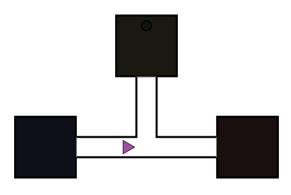


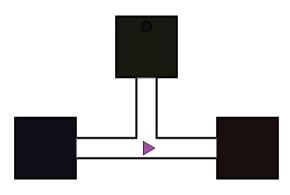


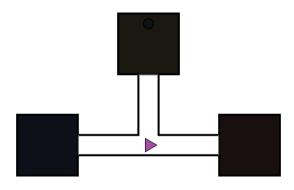




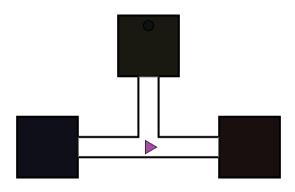








Solving the cookie domain requires memory!



Solving the cookie domain requires memory!

$$\pi^*(a|o_t) \neq \pi^*(a|o_0,\cdots,o_t)$$

Partially Observable RL

The most popular approach:

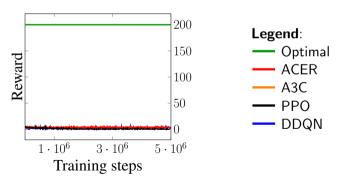
Training LSTMs policies using a policy gradient method.

Partially Observable RL

The most popular approach:

Training LSTMs policies using a policy gradient method.

... starves in the cookie domain.



RMs as memory

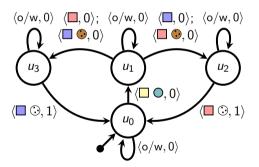
If the agent can detect the color of the rooms $(\square, \square, \square, \square)$,

If the agent can detect the color of the rooms $(\square, \square, \square, \square)$, and when it presses the button (\bigcirc) ,

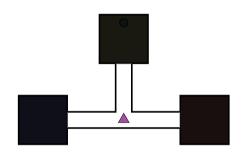
If the agent can detect the color of the rooms $(\square, \square, \square, \square)$, and when it presses the button (\bigcirc) , eats a cookie (\bigcirc) ,

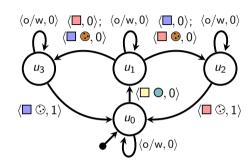
If the agent can detect the color of the rooms $(\square, \square, \square, \square)$, and when it presses the button (\bigcirc) , eats a cookie (\bigcirc) , and sees a cookie (\bigcirc) ,

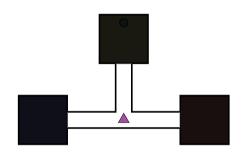
If the agent can detect the color of the rooms $(\square, \square, \square, \square)$, and when it presses the button (\bigcirc) , eats a cookie (\bigcirc) , and sees a cookie (\bigcirc) , then:

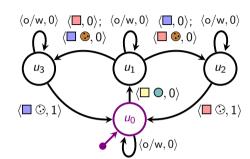


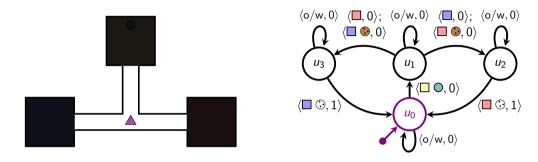
... becomes a "perfect" memory for the cookie domain.



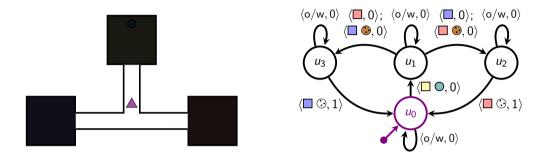




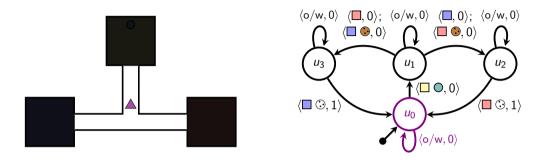




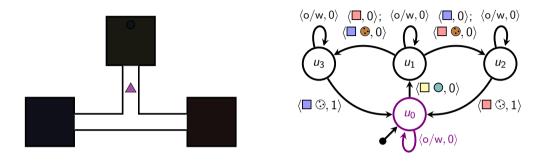
 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$



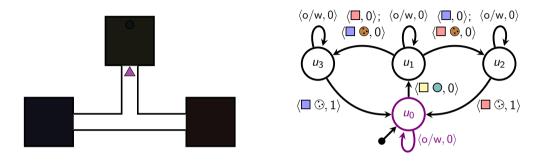
 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$

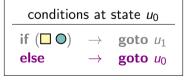


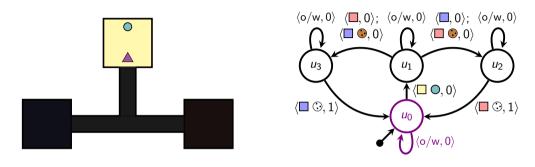
conditions at state u_0 if $(\square \bigcirc) \rightarrow \text{goto } u_1$ else $\rightarrow \text{goto } u_0$



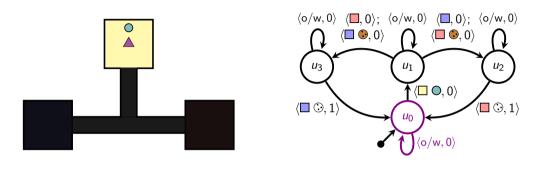
 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$



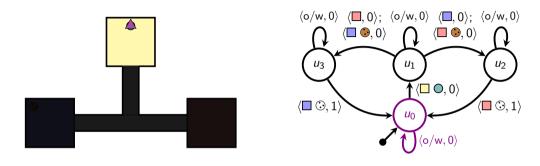


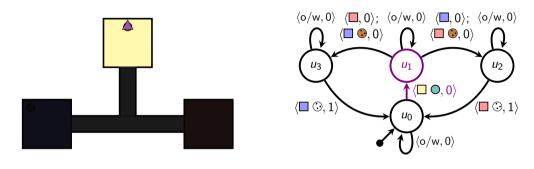


conditions at state u_0 if $(\square \bigcirc) \rightarrow \text{goto } u_1$ else $\rightarrow \text{goto } u_0$

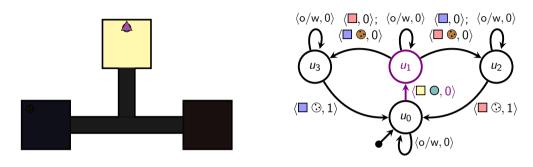


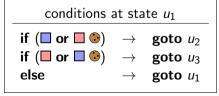
 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \ \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$

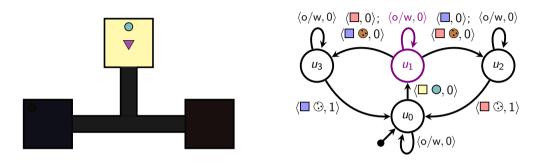


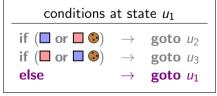


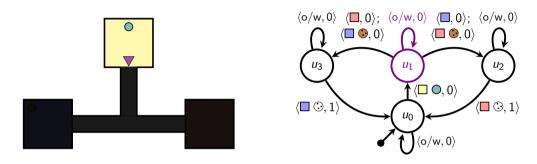
 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \ \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$

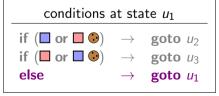


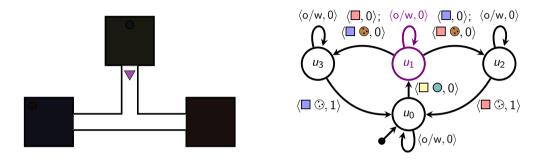


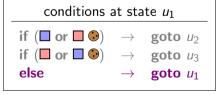


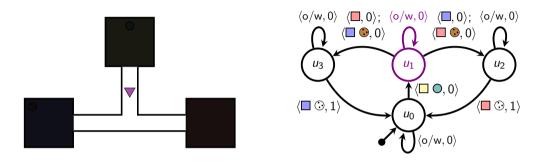


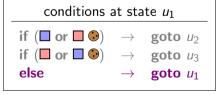


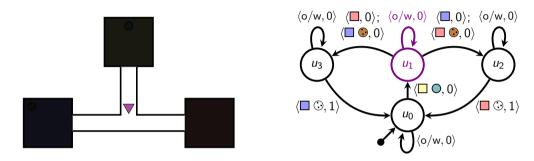


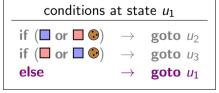


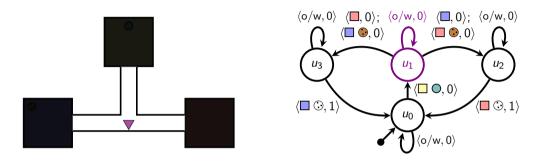


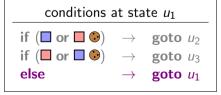


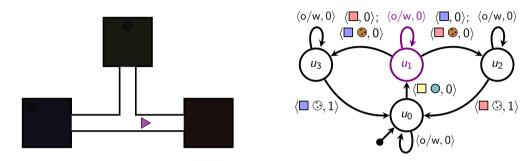


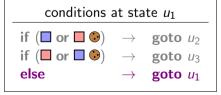


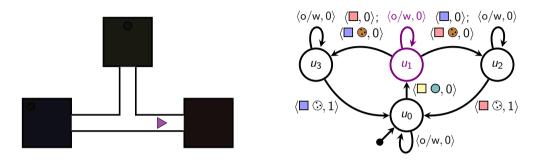


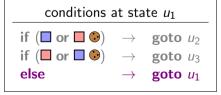


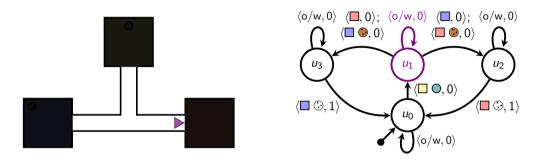


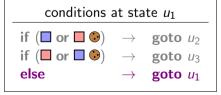


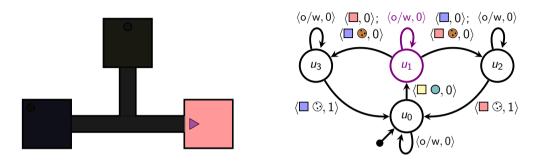


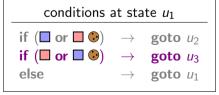


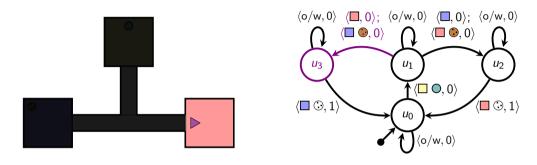


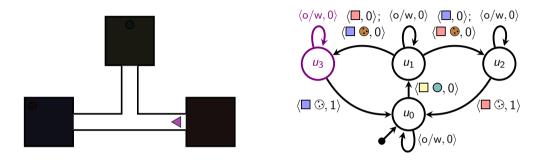




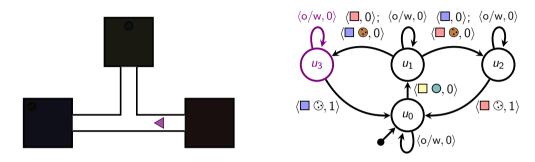




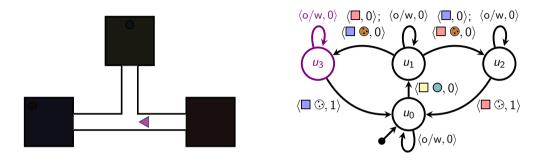




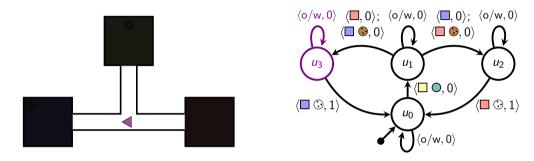
 $\begin{array}{c|c} \text{conditions at state } u_3 \\ \hline \textbf{if } (\square \odot) & \rightarrow & \textbf{goto } u_0 \\ \textbf{else} & \rightarrow & \textbf{goto } u_3 \\ \end{array}$



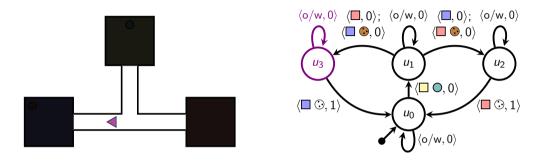
 $\begin{array}{c|c} \text{conditions at state } u_3 \\ \hline \textbf{if } (\blacksquare \bigcirc) & \rightarrow & \textbf{goto } u_0 \\ \textbf{else} & \rightarrow & \textbf{goto } u_3 \\ \end{array}$



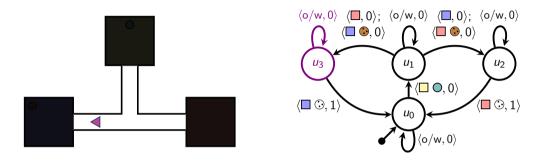
 $\begin{array}{c|cccc} \textbf{conditions at state} \ \textit{u}_3 \\ \hline \textbf{if} \ (\blacksquare \ \odot) & \rightarrow & \textbf{goto} \ \textit{u}_0 \\ \textbf{else} & \rightarrow & \textbf{goto} \ \textit{u}_3 \\ \end{array}$



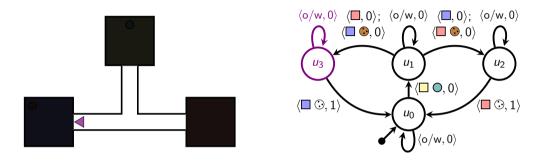
 $\begin{array}{c|c} \text{conditions at state } u_3 \\ \hline \textbf{if } (\blacksquare \odot) & \rightarrow & \textbf{goto } u_0 \\ \textbf{else} & \rightarrow & \textbf{goto } u_3 \\ \end{array}$



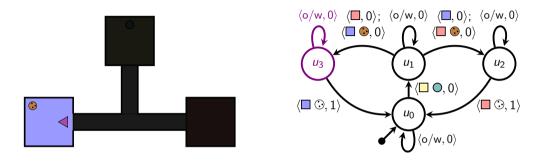
 $\begin{array}{c|c} \text{conditions at state } u_3 \\ \hline \textbf{if } (\blacksquare \odot) & \rightarrow & \textbf{goto } u_0 \\ \textbf{else} & \rightarrow & \textbf{goto } u_3 \\ \end{array}$



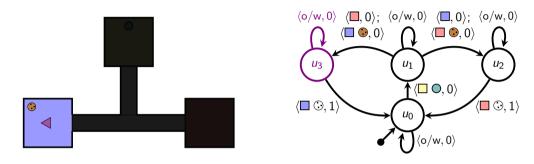
 $\begin{array}{c|cccc} \textbf{conditions at state} \ \textit{u}_3 \\ \hline \textbf{if} \ (\blacksquare \ \odot) & \rightarrow & \textbf{goto} \ \textit{u}_0 \\ \textbf{else} & \rightarrow & \textbf{goto} \ \textit{u}_3 \\ \end{array}$



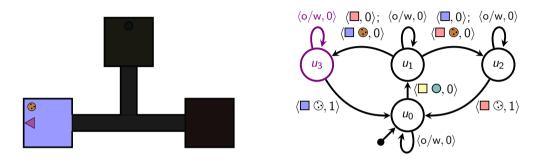
 $\begin{array}{c|c} \text{conditions at state } u_3 \\ \hline \textbf{if } (\blacksquare \odot) & \rightarrow & \textbf{goto } u_0 \\ \textbf{else} & \rightarrow & \textbf{goto } u_3 \\ \end{array}$

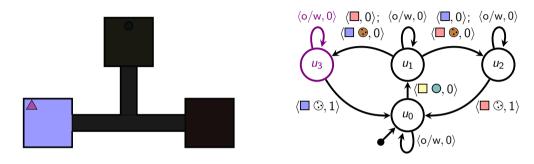


conditions at state u_3 if ($\square \odot$) \rightarrow goto u_0 else \rightarrow goto u_3

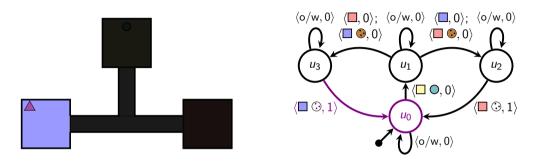


conditions at state u_3 if ($\square \odot$) \rightarrow goto u_0 else \rightarrow goto u_3

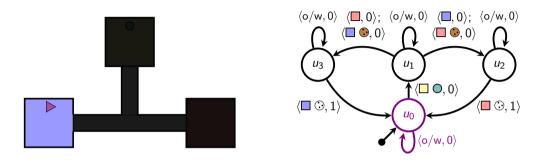


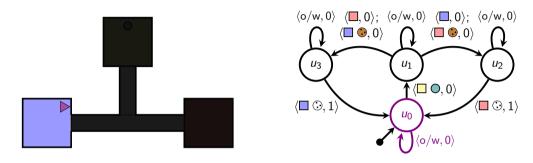


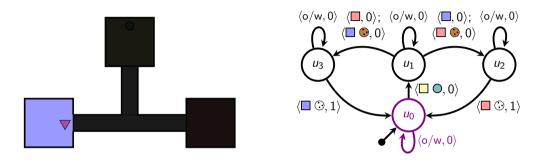
conditions at state u_3 if ($\square \odot$) \rightarrow goto u_0 else \rightarrow goto u_3



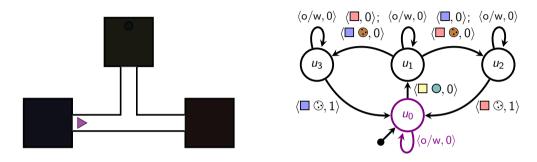
conditions at state u_0 if ($\square \bigcirc$) \rightarrow goto u_1 else \rightarrow goto u_0

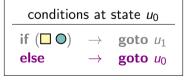


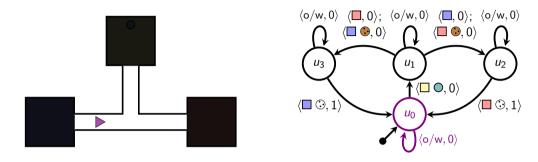




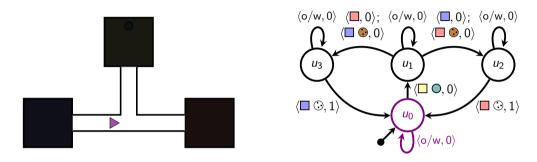
 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$

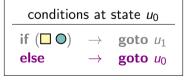


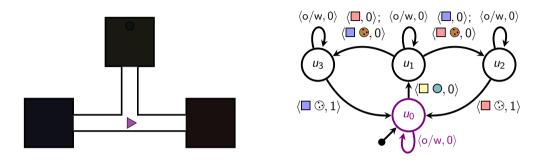




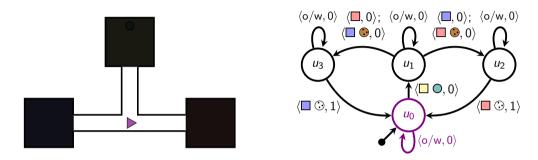
 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$



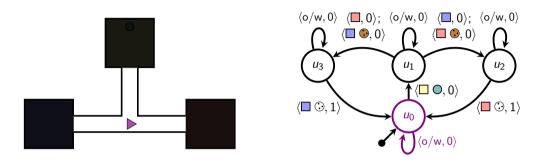




 $\begin{array}{c|c} \text{conditions at state } u_0 \\ \hline \textbf{if } (\square \, \bigcirc) & \rightarrow & \textbf{goto } u_1 \\ \textbf{else} & \rightarrow & \textbf{goto } u_0 \\ \end{array}$

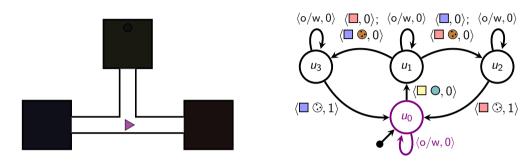


Why is this a perfect memory?



Why is this a perfect memory?

$$\pi^*(a|o_0,\cdots,o_t) = \pi^*(a|o_t,u_t)$$



Why is this a perfect memory?

$$\pi^*(a|o_0,\cdots,o_t) = \pi^*(a|o_t,u_t)$$

Hard problem $\xrightarrow{\mathsf{RM}}$ Easy problem

How to learn such RMs?

Given a set of detectors (e.g., $\{\Box, \Box, \Box, \Box, \bigcirc, \odot, \odot\}$) and traces \mathcal{T} ,

Given a set of detectors (e.g., $\{\Box, \Box, \Box, \Box, \odot, \odot, \odot\}$) and traces \mathcal{T} , learning RMs is a **discrete optimization** problem:

Given a set of detectors (e.g., $\{\Box, \Box, \Box, \bigcirc, \odot, \odot\}$) and traces \mathcal{T} , learning RMs is a **discrete optimization** problem:

$$\begin{array}{ll} \underset{\langle U, u_0, \delta_u, \delta_r \rangle}{\text{minimize}} \sum_{i \in I} \sum_{t \in T_i} \log(|N_{x_{i,t}, L(e_{i,t})}|) & \text{(LRM)} \\ \\ s.t. \ \langle U, u_0, \delta_u, \delta_r \rangle \in \mathcal{R}_{\mathcal{P}} & \text{(1)} \\ |U| \leq u_{\max} & \text{(2)} \\ x_{i,t} \in U & \forall i \in I, t \in T_i \cup \{t_i\} & \text{(3)} \\ x_{i,0} = u_0 & \forall i \in I & \text{(4)} \\ x_{i,t+1} = \delta_u(x_{i,t}, L(e_{i,t+1})) & \forall i \in I, t \in T_i & \text{(5)} \\ N_{u,I} \subseteq 2^{\mathcal{P}} & \forall u \in U, I \in 2^{\mathcal{P}} & \text{(6)} \\ L(e_{i,t+1}) \in N_{x_{i,t}, L(e_{i,t})} & \forall i \in I, t \in T_i & \text{(7)} \\ \end{array}$$

Given a set of detectors (e.g., $\{\Box, \Box, \Box, \bigcirc, \odot, \odot\}$) and traces \mathcal{T} , learning RMs is a **discrete optimization** problem:

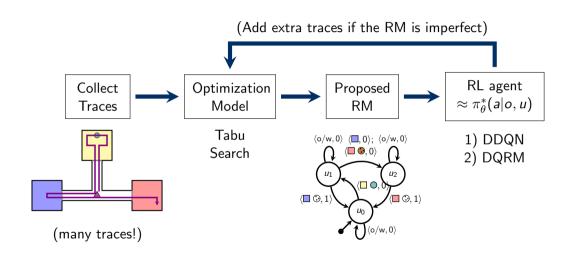
$$\begin{array}{c} \underset{\langle U, u_0, \delta_u, \delta_r \rangle}{\text{minimize}} \; \sum_{i \in I} \sum_{t \in \mathcal{T}_i} \log(|N_{x_{i,t}, L(e_{i,t})}|) & \text{(LRM)} \\ \\ \text{s.t.} \; \langle \mathcal{W}, u_0, \delta_u, \delta_r \rangle \in \mathcal{R}_{\mathcal{P}} & \text{(1)} \\ \\ |U| \leq u_{\text{max}} & \text{(2)} \\ \\ x_{i,t} \in U & \forall i \in I, t \in \mathcal{T}_i \cup \{t_i\} & \text{(3)} \\ \\ x_{i,0} = u_0 & \forall i \in I, t \in \mathcal{T}_i & \text{(5)} \\ \\ x_{i,t+1} = \delta_u(x_{i,t}, L(e_{i,t+1})) & \forall i \in I, t \in \mathcal{T}_i & \text{(5)} \\ \\ N_{u,I} \subseteq 2^{2^{\mathcal{P}}} & \forall u \in \mathcal{U}, I \in 2^{\mathcal{P}} & \text{(6)} \\ \\ L(e_{i,t+1}) \in N_{x_{i,t}, L(e_{i,t})} & \forall i \in I, t \in \mathcal{T}_i & \text{(7)} \\ \end{array}$$

Given a set of detectors (e.g., $\{\Box, \Box, \Box, \bigcirc, \odot, \odot\}$) and traces \mathcal{T} , learning RMs is a **discrete optimization** problem:

$$\begin{array}{ll} \underset{\langle U, u_0, \delta_u, \delta_r \rangle}{\text{minimize}} \sum_{i \in I} \sum_{t \in T_i} \log(|N_{x_{i,t}, L(e_{i,t})}|) & \text{(LRM)} \\ \\ \text{s.t. } \langle U, u_0, \delta_u, \delta_r \rangle \in \mathcal{R}_{\mathcal{P}} & \text{(1)} \\ |U| \leq u_{\text{max}} & \text{(2)} \\ x_{i,t} \in U & \forall i \in I, t \in T_i \cup \{t_i\} & \text{(3)} \\ x_{i,0} = u_0 & \forall i \in I & \text{(4)} \\ x_{i,t+1} = \delta_u(x_{i,t}, L(e_{i,t+1})) & \forall i \in I, t \in T_i & \text{(5)} \\ N_{u,I} \subseteq 2^{2^{\mathcal{P}}} & \forall u \in U, I \in 2^{\mathcal{P}} & \text{(6)} \\ L(e_{i,t+1}) \in N_{x_{i,t}, L(e_{i,t})} & \forall i \in I, t \in T_i & \text{(7)} \\ \end{array}$$

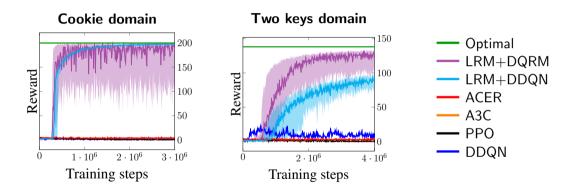
... that we solved using **Tabu Search**.

Overall approach



Results

Results



^{*}Note: The detectors were also given to the baselines.

Discussion at poster #210

https://bitbucket.org/RToroIcarte/lrm

Thanks! :)

Rodrigo

Ethan

Toryn

Rick

Margarita

Sheila