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ABSTRACT
Learning with multi-modal data is at the core of many mul-
timedia applications, such as cross-modal retrieval and im-
age annotation. In this paper, we present a nonparametric
Bayesian approach to learning upstream supervised topic
models for analyzing multi-modal data. Our model devel-
ops a compound nonparametric Bayesian multi-modal prior
to describe the correlation structure of data both within
each individual modality and between different modalities.
It extends the hierarchical Dirichlet process (HDP) through
incorporating upstream supervised response variables and
values of latent functions under Gaussian process (GP). Up-
stream responses shared by data from multiple modalities
are beneficial for discriminatively training and GP allows
flexible structure learning of correlations. Hence, our model
inherits the automatic determination of the number of topics
from HDP, structure learning from GP and enhanced predic-
tive capacity from upstream supervision. We also provide ef-
ficient variational inference and prediction algorithms. Em-
pirical studies demonstrate superior performances on several
benchmark datasets compared with previous competitors.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Nonparametric statis-
tics; H.3.3 [Information Search and Retrieval]: Re-
trieval models; H.4 [Information System Applications]:
Miscellaneous

Keywords
Multi-modal Learning; Nonparametric Bayesian; Topic Model;
Cross-modal Retrieval

1. INTRODUCTION
Nowadays, large collections of data on the web consist of

various modalities, such as images, texts, and audio or video
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clips. Extracting useful knowledge from these growing multi-
modal data has become increasingly important in many ap-
plication areas. Multi-modal learning, sometimes referred to
as multi-view learning [8] or multi-field learning [26], aims
at modeling collections of such kind of data and making
predictions when data of some modalities is missing. One
typical example is to model pairs of images and associated
texts (e.g., captions, paragraphs or articles), which lays the
foundation of many valuable applications, including cross-
modal retrieval, image annotation and so on. However, this
multi-modal learning problem is rather challenging, since it
requires analyzing not only the characteristics of data in sin-
gle modality but also the relevances of data across different
modalities.

Previous works in this area have primarily focused on
looking for latent representations shared by the multi-modal
data. Based on the different techniques they used, these
works can be roughly divided into three categories: subspace
learning, undirected probabilistic graphical models (PGMs),
and directed PGMs. Representative works of the first class
include canonical correlation analysis (CCA) and its vari-
ants [31, 28]. By maximizing the correlation between differ-
ent modalities, it aims to find a low dimensional subspace
representation for multi-modal data. Another ones are based
on distance metric learning [33, 34] and hash function learn-
ing [39], which try to discover optimal nonlinear subspace
endowed with an expected similarity measure. For the sec-
ond class, Markov random fields (MRF) based methods have
commonly been used. For example, the dual-wing harmo-
nium model [35] describes the latent representations shared
by images and texts through tying the latent variables of
two basic harmonium models. The above two types of mod-
els are capable of effectively discovering the desired latent
representations, but often lack intuitive explanations and do
not perform well in terms of prediction.

The main line of the third class of work are multi-modal
topic models (mmTM), such as multi-modal latent Dirich-
let allocation (mmLDA) [2], correspondence latent Dirich-
let allocation (CorrLDA) [2] and the multi-modal aspect
model [22]. Most of them describe the single-modal data
via standard topic models, like latent Dirichlet allocation
(LDA) [4]. Thereafter, [36] extends the Dirichlet prior in
mmTM by using a hierarchical Dirichlet process (HDP) [29]
which is able to automatically choose the number of top-
ics. These models introduce shared latent variables which
either indicate the topic proportions as in mmLDA or the
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indexes of topics as in CorrLDA, thus enforcing strong cor-
relations between topics from different modalities. This kind
of strong correlation is inappropriate since usually data in
one modality contains a considerable amount of modality-
private information that is unrelated to the other. There-
fore, relying on the logistic normal distribution adopted in
correlated topic model (CTM) [3], authors in [26] relax this
strong correlation and allow structure learning of the cor-
relation matrix. Beyond that, the discrete infinite logistic
normal (DILN) [23] distribution is utilized in [30] to further
keep the private topics inside each modality. All the above
mmTMs learn the latent representations of the multi-modal
data in an unsupervised manner and are able to offer intu-
itive probabilistic interpretations.

Recently, upstream supervised response variables, like cat-
egorical labels, which are available in many scenarios, are
utilized for enhancing the performance of prediction. Up-
stream supervised models are common for understanding
scenes in computer vision community [11, 41], since image
categories are cheaply accessible on the web. In contrast to
downstream supervised models, like supervised topic model
and its variants [5, 40], upstream ones assume that response
variables are directly or indirectly involved in generating la-
tent variables. In the setting of multi-modal learning, these
supervised response variables are usually shared by data
from different modalities, thus help describing the relation
between data from different modalities precisely. Moreover,
with this kind of supervised guidance, latent representations
learned by the model are presumably more discriminative.
For example, it has been shown in [24] that applying lo-
gistic regression to class label, is helpful for improving the
predictive capacity of CCA in cross-modal retrieval. At
the same time, similar categorical information has been ex-
ploited in [8, 7] to extend the MRF-based multi-view mod-
els through a supervised max-margin approach and boosted
predictive results are also demonstrated.

In this paper, we propose a novel nonparametric Bayesian
upstream supervised (NPBUS) multi-modal topic model by
combining the above advantages of previous works. Specif-
ically, our model first inherits the two merits of having an
explicit probabilistic explanation and automatic determina-
tion of the number of topics from the HDP-based mmTM.
Then our model introduces a Gaussian process (GP) [25] to
flexibly capture correlation structures both within each indi-
vidual modality and between multiple different modalities.
Moreover, upstream supervised response variables shared
by data from different modalities are incorporated into a
normalized gamma representation of HDP, thus making our
method possess remarkable predictive ability. We also de-
rive an efficient variational inference algorithm for training.
The proposed NPBUS model demonstrates superior exper-
imental results than various competitors in the predictive
tasks of cross-modal retrieval and image annotation.

The rest of the paper is structured as follows. Sec. 2 in-
troduces the background works related to our model. Sec. 3
elucidates our NPBUS multi-modal topic model. Sec. 4.1
presents our variational inference and prediction algorithms.
Sec. 5 presents our empirical results on cross-modal retrieval
and image annotation. Finally, Sec. 6 concludes.

2. BACKGROUND WORKS
In this section, we review the hierarchical Dirichlet pro-

cess (HDP) [29] based topic model for single-modal data and

the discrete infinite logistic normal (DILN) distribution [23],
which lays the foundation of our model to be presented
later. Terminologies from text modeling, e.g. “words”, “doc-
uments” and “vocabulary”, are used throughout the paper,
since they can be well generalized in modeling data of other
modalities. For example, in the context of bag-of-words
model for image classification, “words”, also referred to as
“visual words”, are clustering centers of some low level visual
descriptors (e.g. SIFT [19]), and “documents” correspond to
images.

2.1 Hierarchical Dirichlet Process Topic Mod-
els

We first introduce latent Dirichlet allocation (LDA) [4]
which assumes that documents are represented as mixtures
of latent topics η and words appearing in a document are
drawn independently from their corresponding topics. Specif-
ically, a topic mixing proportion θ for each document is
first sampled from a Dirichlet prior and thereafter the topic
for each word is chosen through sampling a topic index
z ∼ Mult(θ), where Mult(·) is a multinomial distribution.
At last, word x is drawn from its corresponding topic ηz
which is a multinomial distribution over the words in the vo-
cabulary. Note that, in a fully Bayesian treatment, we may
place a prior for topics η. To further model the topic mix-
ing proportion, hierarchical Dirichlet process (HDP) [29], a
nonparametric Bayesian prior, is widely adopted. Formally,
HDP is a Dirichlet process (DP) [13] that has another Dirich-
let process as its base probability measure. In this paper,
we focus on two-level HDPs, though it may be extended to
arbitrary levels. Its hierarchical representation is

G ∼ DP (αG0)

G̃ ∼ DP (βG),
(1)

where G0 is the aforementioned Dirichlet prior for η, and α
and β are the first and second level concentration parame-
ters respectively. The main advantage of HDP formulation
is the automatical determination of the number of topics
owing to its nonparametric nature. Moreover, due to the
almost sure discreteness property of DP [1], the HDP prior
enables the implicit sharing of atomic probability measures
between the repeatedly sampled topic proportions θ. And
it will largely ease our work of specifying multiple priors,
since there will be multiple different sets of topics in the
multi-modal setting.

2.2 Discrete Infinite Logistic Normal (DILN)
Distribution

Though HDP is a popular prior for modeling topic pro-
portions, it is insufficient to capture the correlation structure
between different topics since its construction is a random
measure which means all random variables as well as all sum-
mations of subsets are independent. To overcome this weak
point, discrete infinite logistic normal (DILN) model [23] is
proposed. It takes advantages from both HDP and CTM,
and offers an effective prior for structure learning of topics.

Specifically, DILN first introduces an auxiliary variable �
for each topic η. It can be interpreted as the latent location
of a topic in some latent space. As � and η are associated, the
base distribution used in the first level HDP is augmented as
a product measure G0 × L0, where G0 is still the prior dis-
tribution for topics and L0 is a distribution over latent loca-
tions. To construct DILN, a hierarchical sampling process is
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Figure 1: A graphical illustration of our NPBUS
model. The red rectangle (single dot dashed lines)
indicates the part of GP, the green rectangle (dashed
lines) indicates the part of HDP topic model and the
blue rectangle (double dots dashed lines) indicates
the part of upstream supervised response variable.

implemented as HDP. In the first level, a random measure G
is drawn from Dirichlet process, G ∼ DP (αG0×L0). And in

the second level, a random measure G̃ is drawn from another
DP, G̃ ∼ DP (βG). Meanwhile, a random function f(�) is
drawn from a Gaussian process, f(�) ∼ GP (μ(�), k(�, �′)),
where f(·) and GP are defined on the latent location �, μ
and k are the mean function and kernel function respec-
tively. Finally, a sample from DILN, i.e., the topic mixing
proportion, is constructed via multiplying the random mea-
sure G̃ by the exponentiated value of the random function
f(�). Hence, a topic assignment z could be drawn as,

z ∼ exp(f(�))G̃. (2)

Since � is explicitly correlated via a GP, topic proportions
drawn from DILN are also correlated. And, due to the dis-
creteness of G̃, the sampled topic mixing proportion is dis-
crete.

3. NPBUS MULTI-MODAL TOPIC MODEL
We now develop the nonparametric Bayesian upstream su-

pervised (NPBUS) multi-modal topic model and elaborate
its merits in modeling multi-modal data. Without loss of
generality, we focus on the two-modal dataset which con-
tains collection of images and texts. We emphasize that the
generalization to more and different modalities is straight-
forward. For clarity, we denote the two-modal observable

dataset by X = {x(m)
i , yi|i = 1, 2, ..., D,m = 1, 2}, where

x
(m)
i and yi are the ith word of mth modality and ith re-

sponse variable respectively, and D is the size of the dataset.
Note that in our problem setting, each pair of image and text
shares an extra response variable which plays an supervision
role. Here we highlight the key challenges dealing with such
a type of dataset: (i) modeling correlations of topic propor-
tions both within modality and between different modalities;
and (ii) exploiting upstream supervising information of re-
sponse variable. Then we will explain in detail our NPBUS
model and how it tackles the above challenges.

3.1 Compound Nonparametric Bayesian Multi-
Modal Prior

In the context of multi-modal learning, words in each
modality are drawn independently from the modality-specific
topic given their corresponding topic assignments. For the
ith document of mth modality, we denote the vector of topic

mixing proportion as θ
(m)
i and the probability of choosing

the tth topic is thus θ
(m)
i,t . The topic assignment of the jth

word x
(m)
i,j is defined as z

(m)
i,j and the auxiliary variable of

tth topic appeared in DILN is f
(m)
i,t . Note that, f

(m)
i,t is the

value of a random function modeled by GP and we omit its
input latent location �t here and clarify the reason later.

Similar with HDP topic models, the first level Dirichlet
process of our model is represented via a stick breaking pro-
cess [27],

η
(m)
t ∼ G0

ṽ
(m)
t ∼ Beta(1, α(m))

v
(m)
t = ṽ

(m)
t

∏t−1

j=1
(1− ṽ

(m)
j )

G =
∞∑
t=1

v
(m)
t δ

η
(m)
t

,

(3)

where G0 is the Dirichlet prior for topics, v
(m)
t is the stick

proportion and Beta(·) is a beta distribution.

In the second level, we first draw a random measure G̃
from another Dirichlet process, DP (β(m)G). Note that we
here focus on presenting our prior and leave the detailed
construction of this DP in next section. As aforementioned,
different topics are just weakly correlated owing to the nor-
malization property of probability measure G̃. To capture
flexible correlation structures, we then concatenate the aux-
iliary variables from each modality into an single vector, like
below,

fi = [f
(1)
i,1 , ...f

(1)
i,∞, f

(2)
i,1 , ...f

(2)
i,∞, ..., f

(M)
i,1 , ..., f

(M)
i,∞ ]. (4)

Then we use a GP to model the whole vector fi, which is sim-
ilar with what [26] and [30] have done. Finally, as in DILN,
we could multiply the samples from G by the exponentiated

value of f
(m)
it , which fulfills the introduction of correlation

to topic proportions. Specifically, in the covariance matrix
of GP, the diagonal blocks describe the correlation of topic
proportions within the same modality, and off-diagonal ones
describe the correlation of topic proportions between differ-

ent modalities. Note that, to sample f
(m)
it , we merely need

to sample fi and obtain f
(m)
it immediately according to its

position in the whole vector.
We now turn to model the upstream supervised response

variable y which can be categorical labels, rating scores
and so on. Here we only consider the discrete case, i.e.,
y ∈ {1, 2, ...,K}. Since these responses induce a supervised
grouping of multi-modal data, we could conduct correlation
structure learning within each group. Therefore, in this way,
the whole multi-modal dataset would be modeled more pre-
cisely and the generated topic proportions would be more
discriminative. Specifically, we introduce another random
scaling factor Ci,t which is drawn from a gamma distribution
Gamma(at,yi, bt,yi). Then we divide exponentiated value

exp(f
(m)
i,t ) by Ci,t to obtain a response dependent random

scaling factor. By doing so, the compound nonparametric
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Bayesian multi-modal prior distribution of topic proportions
is formulated as,

θ
(m)
i ∝

∞∑
t=1

exp(f
(m)
i,t )

Ci,t
G̃. (5)

Now the correlation structures of multi-modal data is cap-

tured in the weight term exp(f
(m)
i,t ). And, multi-modal data

within the same group, i.e., having the same value of yi,
would share the same hyperparameters at,yi and bt,yi . Thus
the group specific random weight Ci,t has introduced the
upstream supervising information. As a result, with this
prior at hand, we have solved the two challenges mentioned
above.

3.2 Normalized Gamma Representation
Following the normalized gamma process construction of

HDP in [23], we now develop a representation of our NPBUS
multi-modal topic model. It will be clear that this kind of
representation incorporates the correlation structure via the
second parameter of gamma distribution and simplifies our
posterior inference.

First of all, a normalized gamma process construction of
the second level HDP could be expressed as,

θ̃
(m)
i,t ∼ Gamma(β(m)v

(m)
t , 1)

θ
(m)
i =

∞∑
t=1

θ̃
(m)
i,t∑∞

j=1 θ̃
(m)
i,j

δ
η
(m)
t

.
(6)

where the normalizing constant
∑∞

j=1 θ̃
(m)
i,j is almost surely

finite [23]. Building upon Eq. (6), a topic mixing propor-

tion θ
(m)
i drawn from the second level of our prior could be

constructed below,

f
(m)
i,t ∼ GP (μ,K),

Ci,t ∼ Gamma(ayi,t, byi,t),

θ̃
(m)
i,t ∼ Gamma(β(m)v

(m)
t , exp(−f (m)

i,t )/Ci,t),

θ
(m)
i =

∞∑
t=1

θ̃
(m)
i,t∑∞

j=1 θ̃
(m)
i,j

δ
η
(m)
t

.

(7)

where the third line is derived by absorbing the scaling fac-

tor exp(f
(m)
i,t )/Ci,t of Eq. (5) into the second parameter of

gamma distribution.

Once the topic mixing proportion θ
(m)
i is obtained, we are

capable to generate multi-modal data. The overall genera-
tive process of our model is summarized below:

• For each modality m = 1, ...,M

• For each latent topic t = 1, 2, ...,∞
draw {v(m)

t , η
(m)
t } according to Eq. (3)

• For each document i = 1, 2, ..., D

draw θ
(m)
i according to Eq. (7)

• For each word j = 1, 2, ..., N (m)

draw z
(m)
i,j ∼Mult(θ

(m)
i )

draw x
(m)
i,j ∼Mult(η

(m)

z
(m)
i,j

)

Graphically, the PGM of our model is illustrated as in Fig. 1
in which we separately annotate the part of HDP topic
model, the part of GP prior and the part of upstream su-
pervised response variable. Here we omit the prior G0 of
topics and hyperparameters of Ci,t in the figure for simplic-
ity. As can be seen from the figure, both within modality
and between modality correlation of topic proportions are
captured and the upstream supervised response variable is
also exploited.

3.3 The Correlation Structure
We now exploit the correlation structure of topic propor-

tions in our model. Owing to the normalized gamma pro-
cess representation above, we could analytically calculate
the first two order central moments and the covariance of
the unnormalized topic proportions (i.e., θ̃

(m)
i,t ). These mo-

ments essentially contain the desired correlation structures,
since the correlation matrix can be obtained by merely nor-
malizing the covariance matrix. The mean function μ of GP
is assumed to be zero in deriving the following equations.
After some integration procedures, we could obtain the re-
sults below,

E[θ̃
(m)
i,t |Θ] =

β(m)v
(m)
t ayi,t
byi,t

eK
(m,m)
t,t /2

V[θ̃
(m)
i,t |Θ] =

β(m)v
(m)
t ayi,t
byi,t

e2K
(m,m)
t,t

[
1 +

β(m)v
(m)
t ayi,t
byi,t

(1− 1

eK
(m,m)
t,t

)

]

Cov[θ̃
(m)
i,t , θ̃

(n)
i,s |Θ] =

β(m)β(n)v
(m)
t v

(n)
s ayi,tayi,s

byi,tbyi,s
e(K

(m,m)
t,t +K

(n,n)
s,s )/2(eK

(m,n)
t,s − 1)

(8)

where the conditional set is Θ={β(m), v
(m)
t , at,yi , bt,yi ,K|t=

1, 2, ...,∞}. Recall that the diagonal block sub-matrices of
K denote the correlation of topic proportions within each
modality and off-diagonal ones denote the correlation be-
tween different modalities. To make expressions clear, we
use the superscripts of K to denote the row and column in-
dexes of block sub-matrices in K. For example, K(1,1) may
denote the covariance matrix of topics from image modal-
ity, and K(1,2) may denote the covariance matrix between
topics of image modality and text modality. Then we use
the subscripts of K to denote the row and column indexes
in the corresponding sub-matrix.

Note that the correlation structures shown in the above
equations are distinct from ones in [26] and [30]. As dis-

cussed in [23], the term v
(m)
t indicates how sparsity is en-

forced in the first level DP. Moreover, in our model, it is
clear that the covariance depends both on the kernel matrix
K of GP and hyperparameters at,yi and bt,yi of gamma dis-
tribution. We could control the correlation structure flexibly
through learning these parameters.

4. INFERENCE AND PREDICTION
In this section, we focus on the computational problems

of our NPBUS model and present an efficient variational
posterior inference algorithm and a corresponding prediction
algorithm.
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4.1 Variational Inference
To infer the posterior distributions of the latent variables,

especially the unnormalized topic mixing proportions θ̃, and
to learn the model parameters, we employ a truncated mean-
field variational inference algorithm, which has been shown
to be effective in dealing with nonparametric Bayesian mod-
els [29]. First of all, we denote the previous set of observed
variables as X and the set of all latent variables as V . By
introducing a variational distribution q(V ), we can write the
general variational lower bound for the log evidence log p(X)
as

L = Eq[log p(V,X)]− Eq[log q(V )], (9)

where Eq[·] means the expectation is calculated with respect
to the distribution q. According to the PGM in Fig. 1,

V = {Ci,t, α
(m), β(m), v

(m)
t , η

(m)
t , z

(m)
i,j , θ̃

(m)
i,t , fi,t, μ,K|

m = 1, 2, i = 1, ..., D, j = 1, ..., N (m), t = 1, ..., T},
(10)

where N (m) is the maximum number of words per document
in mth modality. T is the truncation level, which means

q(ṽ
(m)
T = 1) = 1, and ṽ

(m)
T is defined as in Eq. (3). The joint

probability distribution p(V,X) can be obtained according
to the generative process mentioned before. As for the vari-
ational distribution q(V ), it can be factorized according to
the mean-field assumption,

q(V ) =
∏M

m=1

∏D
i=1

∏N(m)

j=1

∏T
t=1 q(α

(m))q(β(m))q(v
(m)
t )

q(η
(m)
t )q(Ci,t)q(z

(m)
i,j )q(θ̃

(m)
i,t )q(fi)q(μ)q(K).

(11)
Note that here we exploit the variational distribution of

fi for approximation. And q(f
(m)
i,t ) thus can be obtained

straightforwardly via marginalization of q(fi), due to the
construction in Eq. (4). Next, distributions in the right hand
side of Eq. (11) are further defined as,

q(η
(m)
t ) ∼ Dir(π

(m)
t ),

q(z
(m)
i,j ) ∼Mult(φ

(m)
i,j ),

q(fi) ∼ Normal(μ̃i, diag(σ̃i)),

q(Ci,t) ∼ Gamma(ãyi,t, b̃yi,t),

q(θ̃
(m)
i,t ) ∼ Gamma(â

(m)
i,t , b̂

(m)
i,t ),

q(α(m))q(β(m))q(v
(m)
t ) = δα(m) · δβ(m) · δ

v
(m)
t

,

q(μ)q(K) = δμ · δK ,

(12)

where δ(·) is the Kronecker delta function and is used for
tractability of inference as in [17]. Moreover, Dir(·) and
Normal(·) are the Dirichlet distribution and multivariate
normal distribution respectively. Here σ̃i is a vector and
q(fi) thus has a diagonal covariance matrix.

Now we have set up the variational lower bound, which
up to a constant is equivalent to the negative Kullback-
Leibler (KL) divergence of the true posterior of latent vari-
ables p(V |X) from the approximated variational distribution
q(V ) [15]. We now derive a coordinate ascent algorithm for
maximizing the lower bound by taking derivatives of Eq. (9)
with respect to variational parameters. Since our variational
inference algorithm is partly related to the one given by [23],
here we only list the different updates. Specifically, the
update equation or gradients of variational parameters are
listed as below:

∂L

∂μ̃i
= λi − γ −K−1(μ̃i − μ)

∂L

∂σ̃i,t
= −1

2
(λi,t +K−1

t,t − 1

σ̃i,t
)

∂L

∂ai,t
=

D∑
j=1

δ(yj = i){log byj,t
b̃yj,t

+ ψ(ãyj ,t)− ψ(ayj ,t)}

bi,t =
ai,t b̃i,t

ãi,t

∂L

∂ãi,t
=

D∑
j=1

δ(yj = i)

{
1− (γt + ãyj ,t)ψ

′(ãyj ,t)−
byj ,t

b̃yj ,t
+
λyj ,t

ãyj ,t

}

∂L

∂b̃i,t
=

D∑
j=1

δ(yj = i)

⎧⎨
⎩γt − ãyj ,t − λyj,t

b̃yj ,t
+
ãyj ,t

b̃2yj ,t
byj ,t

⎫⎬
⎭,

(13)

where ψ(·) and ψ′(·) are the digamma function and trigamma
function respectively. λi is a vector which has the same size
as fi. And its tth element is given as,

λi,t = exp(−μ̃i,t +
1

2
σ̃i,t)

âyi,tb̃yi,t

b̂yi,tãyi,t
. (14)

γ is a vector which is also of the same size as fi and similarly
constructed as in Eq. (4),

γ = [β(1)v
(1)
1 , . . . , β(1)v

(1)
T , . . . , β(M)v

(M)
1 , . . . , β(M)v

(M)
T ].

(15)
Based on above derivations, we thus are able to perform
efficient gradient-based techniques, e.g. Newton-Raphson,
stochastic gradient descent, to find the optimized variational
parameters.

To update the parameters of GP, we maximize the marginal
likehood, which provides equations of μ and K:

μ =
1

D

D∑
i=1

μ̃i

K =
1

D

D∑
i=1

{(μ̃i − μ)(μ̃i − μ)T + diag(σ̃i)},
(16)

We update the kernel matrix directly rather than the kernel
function, since the latter one will increase the computational
burden by inferring latent locations � which are as many as
latent topics of both image and text modality. Moreover,
in this way, low rank approximations of the gram matrix
K, like Nystrom approximation [25], could be applied for
speeding up the inference.

4.2 Prediction
Prediction tasks under the upstream supervised multi-

modal setting usually involve two objectives, (i) given test-

ing multi-modal samples {x̄(m)
j |m = 1, 2, j = 1, ...,N}, pre-

dicting their corresponding response variables {ȳj}; (ii) given
testing samples of one modality {x̄(1)

j }, predicting samples

of the missing modality {x̄(2)
j } and the corresponding re-

sponse variable {ȳj}. Here we focus on achieving the second
objective, since (ii) is generally harder than (i) and is more
closely related to the scenarios of cross-modal retrieval and
image annotation.
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Specifically, the aim of (ii) is to obtain the predictive pos-

terior distribution p(ȳj , x̄
(2)
j |x̄(1)

j , X), where X is the afore-
mentioned set of training dataset. Relying on the Bayes
theorem, the desired probability could be expressed as,

p(ȳj , x̄
(2)
j |x̄(1)

j , X) =

∫
p(x̄

(2)
j |x̄(1)

j , ȳj , V )p(ȳj)dp(V |X),

(17)
where V is the set of all latent variables as in Sec. 4.1 and
p(ȳj) is the prior of response variable. Note that, in the
training process, response variable is observable, whereas it
is a latent variable to be inferred during testing. In our ex-
periments, we just use the empirical distribution of y in the
training dataset. Analogous to the empirical approximation
of MCMC sampling, we calculate the predictive distribution
using variational posterior as,

p(ȳj , x̄
(2)
j |x̄(1)

j , X) ≈ Eq∗ [p(x̄
(2)
j |x̄(1)

j , ȳj , V )]p(ȳj), (18)

where q∗(V ) stands for the approximated variational distri-
bution inferred during training process according to Sec. 4.1.

To compute Eq∗ [p(x̄
(2)
j |x̄(1)

j , ȳj , V )], we could first infer

the topic mixing proportion vector θ
(1)
j and the vector of

auxiliary latent variables f
(1)
j through maximizing a lower

bound as in Eq. (9). Then, based on the conditional expec-
tation of multivariate Gaussian distribution, we can obtain
the auxiliary variables for the missing modality as,

f
(2)
j = μ(2) +K(2,1)(K(1,1))−1(f

(1)
j − μ(1)), (19)

where μ(1) and μ(2) are factorized from μ according to the
construction in Eq. (4), and superscripts ofK denote the row
and column indexes of its block sub-matrices as in Sec. 3.3.
With f

(2)
j at hand, we now are capable to calculate the ex-

pectation.
Further more, if we are only interested in estimating ȳj ,

e.g. in the situation of cross-modal retrieval, we can inte-

grate x̄
(2)
j from the predictive posterior distribution Eq. (18)

which provides the maximum a posterior (MAP) estimation.
When the prior for ȳj is a uniform distribution, MAP is
equivalent to the maximum likelihood estimation which is
what common upstream models [11, 41] do. Therefore, we
could make our prediction algorithm flexible and powerful by
imposing a proper application dependent prior for response

variable. In turn, x̄
(2)
j could be obtained in a similar manner

for situations where ȳj is less cared, like image annotation.

5. EXPERIMENTS
In this section, we present in detail the experiments for

evaluating the performance of our NPBUS model in captur-
ing correlation structures of multi-modal data and its pre-
dictive capacity.

5.1 Data & Experimental Settings
We evaluate the performance of our model on two predic-

tive tasks—cross-modal retrieval and image annotation. For
the first one, we use the public wiki dataset1 contributed
by N. Rasiwasia et al. [24]. The dataset consists of 2,866
image-text pairs which are collected from 2,700 articles se-
lected and reviewed by Wikipedia, of which 2,173 pairs are
randomly chosen to be the training set and the other 693
image-text pairs are chosen to be the test set. Moreover, a

1http://www.svcl.ucsd.edu/projects/crossmodal/

response variable of category label is offered for each train-
ing pair. These labels cover 10 semantic categories, like art,
biology, music and so forth. For the experiments on image
annotation we use the public Corel5K [10] as the benchmark
dataset, which contains around 5,000 images that are only
accompanied by 1 to 5 annotations of keywords. We use a
fixed set of 499 images for testing and the rest for training,
following the setup in [14]. Since there is no human labeled
category information for training data, we cluster the tags
through hierarchical Dirichlet process (HDP) topic model
and automatically find 21 clusterings in total. Then the ob-
tained clustering labels are regarded as response variables.
Note that tags for each image are represented as a vector of
words distribution on the vocabulary and response variable
adopts 1-of-W vector representation. Besides, all visual fea-
tures and ground-truth annotated text tags are available on
the web2.

5.2 Correlation Structure
We first investigate how our NPBUS model chooses top-

ics and how topics learned by our model are correlated on
the wiki dataset. First, we demonstrate the stick propor-

tions v
(m)
t obtained through inference. We notice that, in

Fig. 2, the stick proportions of image vary differently with
ones of text, which motivates our incorporation of separate
HDPs for the modalities. Also, from Fig. 2, we see that the
last stick proportions are close to zero which justifies the
truncation level T = 100 is sufficient.
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Figure 2: Visualization of stick proportions learnt
from our model for image modality (red ball) and
text modality (green triangle).

Next, we turn to illustrate the learned correlation struc-
tures of topics. For saving space, we only show the correla-
tion matrix between topics of image modality and topics of
text modality in Fig. 3. We can see that some correlation
values are negative which may suggest absence of specific
topics from the other modality. Moreover, only a few topics
of image are strongly correlated with topics of text. This is
as expected, since every pair of image and text in this wiki
dataset is extracted owning to their close positions on the
webpage which does not imply close similarity of their con-
tents. To further inspect whether the correlation learned by

2http://lear.inrialpes.fr/people/guillaumin/data.
php
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our model matches our own intuition, we are supposed to
present the content of a pair of correlated topics. However,
it is not intuitive for visualize the topics of image, since
they are distributions over SIFT vocabulary. In order to
overcome this problem, we adopt the same visual relevance
measurement ρ as in [30]. For each topic of text modality,
ρ is defined to be the mean value of absolute correlations
with all image topics. Note that, this measurement cap-
tures the co-occurrences of text topics and combined image
topics. Then we can rank topics according to its value of
visual relevance. In Table. 1, ranked topics and their text
contents are summarized. We see that topics with strong
visual relevance, i.e., large values of ρ, contain clear and
concrete visual counterparts. For example, the first topic is
about birds and their living environments, which are easily
depicted by pictures. Nevertheless, topics with weak visual
relevance are difficult to be described by visual contents, like
the fifth topic in the last row. Therefore, our NPBUS model
does capture the correlation structures of multi-modal data.
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Figure 3: Visualization of correlation structure be-
tween topics of image modality (columns) and topics
of text modality (rows).

5.3 Cross-Modal Retrieval

Table 2: MAP scores of cross-modal retrieval
Method Image Query Text Query Average
SCM [24] 0.277 0.226 0.252
GMA [28] 0.272 0.232 0.253
CMTC [38] 0.293 0.232 0.266
MLBE [39] 0.381 0.496 0.439
NPBUS 0.408 0.544 0.476

We then conduct cross-modal retrieval which contains two
sub-tasks—text retrieval through image queries and image
retrieval through text queries. We first execute our varia-
tional inference algorithm for the training dataset. Then,
given a query in one modality, we predict its correspond-
ing response variable y by the prediction algorithm men-
tioned in Sec. 4.2. Finally, we use the probability vector
p(y) to calculate the ranking of all retrieved data. More
specifically, the response variables of training data are en-
coded in 1-of-K vector representation and here K equals 10
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Figure 4: MAP scores per category with text query.
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Figure 5: MAP scores per category with image
query.

since there are 10 categories. Therefore, the distance be-
tween two response variables is established as distance of
two vectors in vector space. Note that we experimented
with different distance measures, including L1, L2, normal-
ized correlation (NC) and chi-squared χ2 distance, and we
found that the L1 distance outperforms all others. To make
the comparison fair, we take the same feature settings as
in [24], that is, we use topic mixing proportions to repre-
sent text documents and use bag of SIFT features to repre-
sent images. In the training stage, we set the initial values
of two concentration parameters in HDP as: α = 15 and
β = 5, and the truncation level as T = 100 for each modal-
ity. 34 and 66 topics are learnt automatically for training
texts and images, respectively. We compare our NPBUS
model with semantic correlation matching (SCM) [24], gen-
eralized multi-view analysis (GMA) [28], cross-modal topic
correlations (CMTC) [38] and multi-modal latent binary em-
bedding (MLBE) [39]. The performance is measured with
mean average precision (MAP) which has good discrimina-
tion and stability and is widely used in the literature of
information retrieval [9].

The overall MAP scores are reported in Table 2. It is clear
from this table that our NPBUS outperforms other models
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Topics with top-5 visual relevances
population species north birds forest area males females found breeding trees year largest high conservation
film music production movie scene play musical studio role american sound hollywood pictures performance
ship navy fleet naval guns war sea british battleship royal squadron world hitler enemy iowa coast aircraft
king family george prince life wife duke earl father died royal princess marriage lord son daughter married

book works published novel story life writing critics stories popular characters literary history author volume
Topics with least-5 visual relevances

up base out hit second single two followed third cardinals left home inning pearl fly field down yankees
through wall sculpture neilston placed although models agricultural model turrets flight entire having computer
gold richard california order bangladesh nails amp due entire jews raised hotel videos 1976 far observer hours
canadian adams states united tournament international revolutionary gold winter world people old historical
people female eggs number american african minnesota many census 2001 chicks days rate around home life

Table 1: Visualization of topic contents. Each row of words indicates a topic. From top row to bottom row,
the corresponding visual relevances are decreasing. Words from left to right in each topic are ranked in
descending order according to their probabilities.

Query Image Image corresponding to the top retrieved text 

Figure 6: Examples of cross-modal retrieval with im-
age query. Images corresponding to retrieved texts
with top-4 rank scores are shown.

in both sub-tasks on the wiki dataset. This improvement
of performance validates the benefits of incorporating su-
pervising information of semantic abstracts. Note that the
boost of performance is larger in sub-task with text query
than the one with image query. It is perhaps because that
the SIFT feature is not expressive enough for generally de-
scribing visual objects with semantic meaning. Since only
SCM published their per category MAP scores, we compare
the histograms of both text query and image query with
SCM in Fig. 4 and Fig. 5 respectively. And our NPBUS
achieves better results for almost all categories. More in-
stances of cross-modal retrieval are demonstrated in Fig. 6
and Fig. 7. We consider the top-4 ranked retrieved texts for
image queries in Fig. 6. And in Fig. 7, we show the top-5
ranked images for text queries. Note that, for the ease of
display, we only show the images corresponding to the re-
trieved texts in Fig. 6 and contents of text queries have been
fragmented in Fig. 7.

5.4 Image Annotation
In experiments of image annotation, variational inference

is first conducted to obtain the approximated variational

Table 3: Comparison of performance for image an-
notation

Methods P R N+
CorrLDA [2] 6 9 59
CRM [16] 16 19 107
InfNet [21] 17 24 112
NPDE [37] 18 21 114
SML [6] 23 29 137
MBRM [12] 24 25 122
TGLM [18] 25 29 131
MSC [32] 25 32 136
JEC [20] 27 32 139
TagProp [14] 33 42 160
NPBUS 29 44 187

distribution for training dataset. For testing images, we
compute the desired conditional probability of tags given
response variables and image feature according to the pre-
diction algorithm. Following the aforementioned convention,
captions with first 5 highest conditional probabilities are
drawn as the final annotation results. As for image features,
we exploit the same types of ones as in [14], and normalize
them by their L1 norm separately before the combination
step. Since the overall features they used are of more than
30,000 dimensions, we reduce the dimension to 500 by princi-
ple component analysis (PCA) for computational efficiency.
Moreover, 3 standard measures are adopted as in [6]: the
mean precision per word (i.e., P), the mean recall per word
(i.e., R) and number of keywords with non -zero recall value
(i.e., N+). We compare our NPBUS with 10 other meth-
ods which publicly report their results on this dataset. The
experimental comparisons are listed in Table 3. From this
table, we can find that NPBUS ranks 2nd with respect to
P and achieves the best results in terms of R and N+. The
causes for less precision than the state-of-art may be the
reduced-dimension visual features used in our experiments.
Also, since some training images have too few attached tags,
the topic model may not perform better compared to some
simple model, like logistic regression in [14]. Finally, the su-
pervising information obtained via unsupervised HDP clus-
tering is somewhat limited.
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On 31 January, the effort to retake the city began 
anew. The attack was launched at 08:30 hours, and 
was met by inaccurate Iraqi fire which knocked-out 
two Saudi V-150 wheeled vehicles.Stanton, p. 9, 
claims that two vehicles were destroyed, while 
Westermeyer, p. 31, claims that three were knocked-
out. The 8th battalion of the Saudi brigade was 
ordered to deploy to the city by 10:00 hours, while 
5th Battalion to the north engaged another column of 
Iraqi tanks attempting to reach the city. The latter 
engagement led to the destruction of around 13 Iraqi 
tanks and armored personnel carriers, and the 
capture of 6 more vehicles and 116 Iraqi soldiers, 
costing the Saudi battalion two dead and two 
wounded…… 

''Honoured members: the Hockey Hall of Fame'', p. 
91. On March 30, 1993, it was announced that Gil 
Stein, who at the time was the president of the 
National Hockey League, would be inducted into the 
Hall of Fame. There were immediate allegations that 
he had engineered his election through manipulation 
of the hall's board of directors. Due to these 
allegations, NHL commissioner Gary Bettman hired 
two independent lawyers, Arnold Burns and Yves 
Fortier, to lead an investigation. They concluded that 
Stein had "improperly manipulated the process" and 
"created the false appearance and illusion" that his 
nomination was the idea of Bruce McNall……  

Figure 7: Two examples of cross-modal retrieval with text query. Left parts are fragmented queries and right
parts are corresponding retrieved images with top-5 rank scores. The content of the top text describes a war
and the below one is about hockey.

6. CONCLUSIONS
In this paper, we have presented a nonparametric Bayesian

upstream supervised (NPBUS) multi-modal topic model.
Our NPBUS model allows flexible learning of correlation
structures of topics within individual modality and between
different modalities. And it becomes more discriminative
via incorporating upstream supervising information shared
by multi-modal data. Last, it is capable to automatically
determine the number of latent topics in each modality. We
also devise efficient variational inference and prediction al-
gorithms. Extensive experiments demonstrate the above ad-
vantages in terms of cross-modal retrieval and image anno-
tation.

In future work, we intend to develop truncation free al-
gorithms to improve our approximated inference, or utilize
sampling methods, like MCMC. And we also will exploit
low rank approximations to accelerate the kernel learning.
Moreover, we will apply our model for mining more differ-
ent kinds of multi-modal data, e.g., multi-lingual webpages,
multi-source perception data of robotics.

7. ACKNOWLEDGMENTS
Jun Zhu is supported by the National Basic Research

Program (973 Program) of China (Nos. 2013CB329403,

2012CB316301), and National Natural Science Foundation
of China No. 61322308. Zengchang Qin is supported by the
National Science Foundation of China No. 6130504.

8. REFERENCES
[1] D. Blackwell and J. MacQueen. Ferguson distributions
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