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Overview

Our work develops a framework on how Pytorch models can be optimized so that

they can be deployed on the edge using WASI-NN which is a standard proposal for

performing machine learning inference on WebAssembly, thus making efficient and

secure machine learning inference on edge devices using WebAssembly.

Motivation

Challenges in Edge AI Deployment

Edge devices typically have just 1%

compute of regular systems.

Diverse edge device hardware

necessitates unique AI model

optimizations, increasing

development complexity due to

varying instruction sets, and

memory architectures.
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Enabling Edge AI

In order to streamline On-Device AI inference: Our core motivation is to leverage

the power of WebAssembly (Wasm) and the standardized interface provided by

WASI-NN, to optimize Pytorch models to run on a number of edge devices while

also being efficient and secure thanks to the advantages of WebAssembly.

RelatedWork

One approach for running ML inference on edge device is to convert the ML model
to a format that can be run on a variety of devices, such as ONNX.

Conversion to ONNX Format: Another approach involved converting PyTorch models to the

ONNX (Open Neural Network Exchange) format and then executing them using an ONNX

runtime or other edge AI execution environments like OpenVINO. ONNX provides a data flow

graph that defines the operations. The graph is defined using protobuf which provides

platform-agnostic data form thus increasing portability.

PyTorch Mobile: Provides APIs and a runtime environment to execute state-of-the-art machine

learning models on mobile devices while also enabling privacy-preserving features via federated

learning techniques.

There are some limitations to these approaches though. Models with dynamic

control flow can be more difficult to handle due to ONNX having a static graph

representation. Another consideration is for support for multiple operators in

ONNX.

WASI-NN is a standard proposal for performing machine learning (ML) inference on

WebAssembly (WASM). It allows WASM modules to call the low-level bits required

for inference, abstracting the module from the underlying system. This allows the

host to use any available hardware, so the same module can run ML inference on

multiple systems. By using the capability of WASM, there is more efficient and

secure ML deployments.

Compared with Onnx and Edge AI execution environments, the biggest benefit of

using WASI-NN is the deployment environment. As an extension, WASI-NN is not

tied to any specific platform. This eliminates the need for model conversion,

simplifying the deployment process. The WASI-NN PyTorch backend is PyTorch,

allowing for seamless integration of PyTorch models. Contrary to PyTorch Mobile,

this approach eliminates the need for model conversion, thereby preserving the

original PyTorch model format for seamless deployment.

Methods

We are interested in edge scenarios where we are limited by memory and compute.

We aim to address the challenge of running PyTorch models in these environments and

facilitating portability by running these as Wasm modules.
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Figure 1. Overview of our proposed plug-and-play framework to run PyTorch models with Wasm on

multiple targets. (a) denotes the main settings for which we propose this framework and shows how

WASI-NN fits in the model runtime (b) denotes how our framework runs while inference.

Inference code gets modified while compiling to

use WASI bindings to make system calls for

accessing the file system or using any hardware.

Wasm runtimes are equipped to handle these

instruction sets and are platform-specific.

Make Wasm-specific optimizations to inference

code by comparing LLVM-IR.

A fully-portable, near-native, immensely small,

and secure (due to sandboxing, but with smaller

sizes than a container) Wasm module is ready to

be deployed in multiple settings.
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Figure 2. The architecture of howWASI

handles systems calls [2].

Theoretical Improvements

Security

Each Wasm module executes within a sandboxed

environment separated from the host runtime. The model

executes independently, and can’t escape the sandbox

without going through appropriate APIs.
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A Wasm module is just a binary format with no host-

specific OS calls and it runs with limited, local, nondeter-

minism which sometimes might lead to unexpected be-

havior. Runtimes invent their own APIs.

Small Artifacts

AWasm module is also size-efficient when contrasted

with containers since each module only has the runtime

code and shares the runtime with other Wasm modules.

The execution environments are still sandboxed from

each other and can depend on different backends.
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Results Overview

We compare our approach with other edge deployment platforms or near-native ap-

proaches: PyTorch Mobile, Taichi, ONNX and OpenVino. However, our approach also

comes with another set of benefits apart from the execution time.

We see ∼40% faster volumetric rendering with MobileNeRFs over Taichi AOT

We see ∼35% faster volumetric rendering with Instant-NGP over Taichi AOT

We see ∼10.40% faster inference time with MobileNetV2 over Pytorch Mobile.

We see ∼8.06% faster inference time with YoloV8 over Pytorch Mobile.

Results

MobileNeRF0

10

20

30

40

50

60

Tr
ai

ni
ng

 (s
) (

lo
we

r i
s b

et
te

r)

Instant-NGP0

5

10

15

20

25

30

35

Tr
ai

ni
ng

 (s
) (

lo
we

r i
s b

et
te

r)

Mobilenet_v20

20

40

60

80

100

120

In
fe

re
nc

e 
(m

s)
 (l

ow
er

 is
 b

et
te

r)

YOLOv80

20

40

60

80

100

120

140

In
fe

re
nc

e 
(m

s)
 (l

ow
er

 is
 b

et
te

r)

Our Approach Taichi AOT ONNX PyTorch Mobile or Native OpenVino

Figure 3. A quantitative comparison of how our approach relates to other edge deployment platforms,

we use similarly quantized models to ensure fair comparisons. For MobileNeRF and Instant-NGP we

compare our approach to Taichi AOT, ONNX, and a Native runtime. For MobileNet and Yolov8 models

we compare our approach to OpenVino, ONNX, and PyTorch Mobile.
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Figure 4. A qualitative comparison between our approach and using ONNX to deploy models. Our goal

with this and other comparisons in this section is to set up fair comparisons between our approach and

other approaches in the sense that they deploy the same model. The model performance, here

Instant-NGP, does not have any impact when the model is deployed using our approach.
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