
Squeeze3D: Your 3D Generation Model is Secretly an
Extreme Neural Compressor

Rishit Dagli Yushi Guan Sankeerth Durvasula
Mohammadreza Mofayezi Nandita Vijaykumar

University of Toronto
{rishit, guanyushi, sankeerth, mofayezi, nandita}@cs.toronto.edu

squeeze3d.github.io

Abstract

We propose Squeeze3D, a novel framework that leverages implicit prior knowledge
learnt by existing pre-trained 3D generative models to compress 3D data at ex-
tremely high compression ratios. Our approach bridges the latent spaces between a
pre-trained encoder and a pre-trained generation model through trainable mapping
networks. Any 3D model represented as a mesh, point cloud, or a radiance field is
first encoded by the pre-trained encoder and then transformed (i.e. compressed)
into a highly compact latent code. This latent code can effectively be used as
an extremely compressed representation of the mesh or point cloud. A mapping
network transforms the compressed latent code into the latent space of a powerful
generative model, which is then conditioned to recreate the original 3D model
(i.e. decompression). Squeeze3D is trained entirely on generated synthetic data
and does not require any 3D datasets. The Squeeze3D architecture can be flexibly
used with existing pre-trained 3D encoders and existing generative models. It can
flexibly support different formats, including meshes, point clouds, and radiance
fields. Our experiments demonstrate that Squeeze3D achieves compression ratios
of up to 2187× for textured meshes, 55× for point clouds, and 619× for radi-
ance fields while maintaining visual quality comparable to many existing methods.
Squeeze3D only incurs a small compression and decompression latency since it
does not involve training object-specific networks to compress an object.

1 Introduction

The rapid advancement of 3D data acquisition and representation technologies over the past decade
has significantly expanded the availability and generation of high-resolution 3D content across various
domains in different formats, including, meshes, point clouds, and radiance fields (which could be
extracted from a NeRF [72] or a 3DGS [46]). The widespread use of 3D data necessitates the
development of techniques that enable efficient transmission, storage, and processing of large-scale
3D representations. To this end, compression and the use of compressed representations for 3D data
are of utmost importance, e.g., in streaming, autonomous navigation, digital twins, remote sensing.

A large body of research proposes techniques to compress meshes, point clouds, neural radiance
fields (NeRFs) [72], and 3D Gaussian Splats (3DGS) [46]. These approaches aim to maximize
the compression ratio while retaining reconstruction quality. For example, traditional mesh deci-
mation techniques [87, 28, 58, 52] remain foundational for polygon reduction, but their reliance
on handcrafted simplification rules limits their ability to preserve fine geometric details at extreme
compression ratios. MPEG’s G-PCC and V-PCC standards [88, 61] use projection-based methods for
point cloud compression; however, these approaches incur overheads for representing fine details

Preprint.

https://squeeze3d.github.io/

Original: 1016.18 MB
Compressed: 0.4645 MB (2187.7x)

Ground Truth (6.11 MB)

Compressed (0.003 MB)
Squeeze3D

Reconstructed

Original: 2787.36 MB
Compressed: 4.32 MB (645.2x)

Original: 18.02 MB
Compressed: 0.316 MB (57.0x)

Mesh Point Cloud Radiance Field

Figure 1: We showcase extreme compression of 3D models while preserving perceptual quality. Top:
Our method compresses a diverse collection of 3D models in various formats: meshes, point clouds,
and radiance fields. Bottom: Detailed comparison between the original “Pikachu” model (6.11 MB)
and the reconstruction after compression. The object was compressed to merely 0.003 MB.

and packing. Prior works also propose a range of compression methods for NeRFs [56, 22, 100, 74]
or 3DGS models [23, 51]. Several works propose autoencoder-style networks that compress 3D
models into small latent vectors [121, 30, 129, 10]. Usually, the compression ratios achieved by these
methods are of the order of 100x for meshes and the order of 10x for point clouds, but typically much
lower.

Our goal is to develop a framework for extreme compression of 3D data stored in any format
while retaining high visual quality. Recent years have seen significant and continued advances and
development of powerful generative models. In this work, we aim to leverage the implicit prior
knowledge learnt by the powerful 3D generative models [115, 44] to enable extreme compression
ratios. Recent works also propose techniques to leverage generative models for 3D compression [122,
17, 121, 107, 123, 8, 84] and in one case achieves extreme compression for meshes [122]. However,
these approaches require training specialized encoders and generative models for a single 3D format.
In contrast, our goal is to flexibly use existing encoders and generator models that provide adaptability
as encoders/generative models evolve and flexibility across 3D formats.

We propose Squeeze3D, a compression framework, that generates a highly compressed latent vector
that can be used to recreate the original 3D data using an existing pre-trained generative model.
Squeeze3D comprises three key components: (1) the input 3D data is encoded with a pre-trained
encoder. This allows us to extend Squeeze3D to other 3D encoders. (2) We train two small neural
networks that we call forward mapping network and reverse mapping network. The forward mapping
network maps the encoded representations into an extremely compressed latent space. The reverse
mapping network converts the code from the compressed latent space to the latent space of the
generative model. (3) We use a pre-trained generation model to generate the original 3D data using
the code generated by the reverse mapping network. Squeeze3D can be flexibly implemented with
any pre-trained encoder and generative model.

The forward and reverse mapping networks are trained for any given encoder-generator pair. We
first artificially generate a 3D dataset via random prompts to the generator model. This 3D dataset is
encoded using the pre-trained encoder. The set of latents produced from the pre-trained encoders
(training inputs) and their corresponding latents from the pre-trained generator (ground truth) are
used to train the forward and reverse mapping networks. We propose a loss function that minimizes
redundant information in the compressed latent space.

2

Squeeze3D can be flexibly applied to 3D data in different formats. We implement and evaluate
our method for mesh, point cloud, and radiance field compression using 3 existing encoders and
5 existing generative models. We demonstrate that our method achieves significantly higher or
on-par compression ratios than any existing compression technique for meshes, point clouds, and
radiance fields with reconstruction quality that is on par with many prior approaches. We demonstrate
a compression ratio of 2187× for a subset of the Objaverse [20] dataset, 55× on a subset of
ShapeNet [7], 614.9× on a collection of radiance fields [39]. While Squeeze3D expectedly cannot
achieve state-of-the-art reconstruction quality, we qualitatively show that it is able to retain high
visual quality.

Contributions. (1) To the best of our knowledge, this is the first framework that leverages pre-
existing pre-trained generative models to enable extreme compression of 3D data.

(2) We demonstrate the feasibility of establishing correspondences between disparate latent manifolds
originating from neural architectures with fundamentally different structures, optimization objectives,
and training distributions.

(3) We evaluate Squeeze3D for mesh, point cloud, and radiance field compression and demonstrate
that generative models are a promising approach for extreme compression of 3D models. Squeeze3D
can be flexibly extended to different encoders, generative models, and 3D formats.

2 Related Works

2.1 Compressing Explicit 3D Representations

Classical compression techniques for meshes include approaches that reorder the structure of triangles
and faces in the mesh to enable compressed encodings of elements based on their local structure
and perform quantization [19, 105, 86, 106, 24]. Most of these techniques are lossless and thus
achieve high fidelity, however, they are inherently limited in their ability to significantly reduce
file sizes since they preserve all details of the mesh representation. To overcome the limitations of
lossless compression, lossy techniques have emerged as popular alternatives. Geometry simplification
methods aim to reduce the number of polygons in a mesh while retaining as much of the original
structure as possible [52, 28, 98, 99]. Extensions of these methods have incorporated surface intrinsic
properties, such as the mesh Laplacian, as a basis for simplification [52] or error metrics [28, 15] and
couple this with entropy coding [49]. Recently, there have also been approaches that couple these
with learned models [79].

Surface Upsampling. Traditional subdivision algorithms [130, 6, 64] refine coarse meshes by
splitting polygonal faces into finer elements, often paired with displacement mapping [37] to enhance
detail. However, these methods rely on hard-coded priors and fixed polynomial interpolations,
which can overly smooth the reconstructed geometry and fail to capture intricate details. Neural
approaches [34, 62] address these limitations by embedding geometric information into learnable
parameters.

2.2 Neural Graphic Primitives

Neural networks are increasingly being used to represent 2D images [95, 102, 27], 3D objects and
scenes [96, 43, 77, 102, 114, 18, 72, 68], surface representations [101, 104, 81, 22], occupancy
networks [69, 14], and signed distance fields [71, 76, 3]. These methods, out of the box, can
also be used to compress 3D models in some format since the learned neural network weights
are often already significantly smaller. Many NGP compression methods often employ standard
neural network techniques to compress MLP by knowledge distillation [92], pruning [40, 113, 45],
quantization [91, 128, 117, 29, 126], factorizong tensor grids [26, 75], low-rank approximation [92,
109, 103, 41], and using codebooks [55, 53, 54] for quantization. Another approach is to compress
feature grids or learnable embeddings [93, 11, 78] or by compressing extracted voxels [108, 9]
in contrast to compressing the MLP often. Another set of approaches combines many of these
orthogonal improvements to compressing NeRFs [57]. However, these methods often require training
networks per scene or object, incurring significant compression latencies.

3

Textured
Mesh

Point
Cloud 3D geometry

in any format
Latents for
Generator

Compressed
Representation

Encoded
Representations

3D
Generator

3D
Encoder

Compression Decompression

Radiance
Fields

Figure 2: Overview of our Method. Squeeze3D bridges arbitrary latent spaces between 3D encoders
and generators through trainable mapping networks. During compression, a 3D geometry is encoded
and then transformed into a compact representation via the forward mapping network. During
decompression, the reverse mapping network converts this representation into the generator’s latent
space, which is then used to reconstruct the original geometry.

2.3 3D Autoencoders and Generators

Autoencoders encode inputs into a latent space and then back into the original input using an encoder-
decoder pair; thus, they could be used as compression algorithms. Early approaches relied on
volumetric representations, discretizing 3D shapes into voxel grids to leverage ConvNets for encoding
and decoding [63, 35, 59, 5, 73]. While these approaches are effective for regular grid structures,
these methods faced scalability challenges due to cubic memory growth with resolution increases.
Subsequent advancements focused on spectral methods for encoding 3D shapes in frequency domains,
offering compact latent representations but requiring precomputed basis functions that limited
generalizability across shape categories [118, 76].

Several works [127, 13, 111, 50] use a VAE [47] to compress 3D data into a compact latent which
could be used as a compressed representation. There also exist many approaches that train generators
to reconstruct radiance fields [48, 39, 112], Gaussians [110, 66, 112], or voxels [83, 112]. Some recent
works also pose the problem as learning in a token-space [8, 12, 94, 122, 124, 116, 65, 60, 38, 67, 16],
or with diffusion models [121, 2, 84, 25, 82, 89]. One such generative model [122] is able to compress
meshes with high compression ratios. Compared to these methods that use autoencoders or generative
models for compression, Squeeze3D does not require training specialized encoder-generators for
each representation. Instead, Squeeze3D aims to use existing encoders and generative models. This
enables flexibly adapting the approach as encoders and generative models evolve and supporting
different 3D formats.

The work closest to our method is Generative Latent Coding (GLC) [42], which trains an autoencoder-
style generative model to compress images, particularly compressing the latent representations for an
image obtained through VQ-VAE [107]. However, this method is not designed for 3D data.

3 Method

In this work, we introduce Squeeze3D, a technique to generate highly compressed representations
of 3D models by leveraging the implicit prior knowledge learnt by 3D generative models. We also
leverage the availability of many 3D encoders to support an extensible set of 3D formats.

The Squeeze3D architecture is depicted in Figure 2. The key ideas of Squeeze3D are as follows. (1)
We leverage existing 3D encoders to generate encoded representations for a given 3D format. Thus,
the Squeeze3D architecture can be extended to support different 3D formats by using new or existing
encoders. This approach also enables smaller mapping networks, as we now introduce. (2) We use
small neural networks to convert from this encoded representation to a highly compressed latent
representation (during compression) and then back into the latent space of a 3D generative model (for
decompression). We refer to these neural networks as the forward and reverse mapping networks,
and they effectively map between the latent space of a 3D encoder to that of a 3D generative model.
Thus Squeeze3D can leverage a new 3D generative model by retraining the mapping networks. (3)
We propose an additional loss term that enables robust training of the mapping networks to generate

4

Table 1: Notation. The notation we use to describe our method.
Symb. Description Symb. Description

G A 3D geometry in some format E 3D encoder model: E(G) 7→ zE ∈ RdE

G 3D generator model: G(zG, c) 7→ G′ zE Latent code from the encoder: zE ∈ RdE

zG Latent code for the generator: zG ∈ RdG zcomp Compressed representation zcomp ∈ RdC

c Conditioning information (e.g. text prompt,
image) for G

FE
θ Forward mapping network: FE

θ (zE) 7→
zcomp

FD
θ Reverse mapping network: FD

θ (zcomp) 7→
zG

dC Dimensionality of compressed representa-
tion

dG Dimensionality of generator latent space dE Dimensionality of encoder latent space

a highly compact latent representation that can be used to store/transmit the 3D model. We share an
overview of the notation we use to describe our method in Table 1.

Mapping networks offers two major benefits over a encoder-generator pair such as MeshAnything [12]:
(1) The mapping networks typically provide significantly higher compression ratios than existing
VAE approaches; (2) Mapping networks provide more flexibility in choice of 3D format, for example,
InstantMesh or LRM require multi-view images as input rather than a mesh.

3.1 Bridging Latent Spaces

Squeeze3D comprises two pre-trained models: (1) a 3D encoder E that maps 3D representations to a
latent space, and (2) a 3D generator G that synthesizes 3D models of the same initial representation.
For a given 3D representation (mesh, point cloud, radiance field) G, the pre-trained encoder E
produces a latent representation

zE = E(G) ∈ RdE (1)

This latent zE encapsulates G, but is not in a highly-compressed format. Additionally, we cannot
directly use this representation with the generator G, as G operates in a different latent space. The
generator G synthesizes a 3D model G′ given a latent code zG and in some cases conditioning
information c, G′ = G(zG, c). To bridge these disparate latent spaces, we train two mapping
networks:

Forward Mapping network FE
θ : Maps from the encoder’s latent space to the compressed space,

zcomp = FE
θ (zE). Reverse Mapping networks FD

θ : Maps from the compressed space to the
generator’s latent space, zG = FD

θ (zcomp).

We train FE
θ , and FD

θ together and keep the encoder E and generator G networks frozen.

Compression. To compress any 3D model G, the model is first encoded using the pre-trained
encoder E and then mapped into a highly compressed latent zcomp using the forward mapping
network FE

θ

zcomp = FE
θ (E (G)) (2)

Decompression. To decompress the model from its highly compressed latent representation zcomp,
we use the reverse mapping network FD

θ to obtain the latent in the 3D generator space. The 3D
generator then reconstructs the original 3D model G (G′)

G′ = G
(
FD
θ (zG)

)
(3)

3.2 Training Squeeze3D

In order to train the Squeeze3D architecture, we need to train the mapping networks for any given pair
of pre-trained 3D encoders and pre-trained 3D generator models. To train these mapping networks, we
need training samples from the encoder’s latent space and the corresponding latents in the generator’s
latent space. These latents in the generator’s latent space serve as “ground truth” samples during the
training process. We summarize our training process in Figure 3. We now describe how to generate a
training dataset with samples from both of these latent spaces.

5

Latents for
Generator

Compressed
Representation

Encoded
Representations

Synthetic
Ground
Truths

(b) Training the Mapping Networks(a) Creating the Training Data

3D
Generator

3D
Encoder

(paired data)

Synthetic
Ground Truths

Encoder
Latents

Figure 3: Training Squeeze3D. We show an overview of (a) our process of creating synthetic data to
train the mapping networks and (b) our process of training the mapping networks.

Given a pre-trained 3D generator G and encoder E, we first sample a diverse collection of condi-
tioning inputs C = {ci}Ni=1 appropriate for the generator model (e.g. text prompts for text-to-3D
generators, images for image-to-3D generators, or random noise for unconditional generators). For
each conditioning input ci, we sample latent vectors zGi

from the generator G and then synthesize a
3D model using the generator: G′i = G(zGi

, ci). Then we encode this synthetic or generated 3D
model using the pre-trained encoder E, zEi = E(G′

i). This methodology gives us paired synthetic
data, i.e., latents, for any given pair of encoder and generator. {(zEi , zGi)}Ni=1, which provides the
necessary supervision for training our mapping networks.

The mapping networks FE
θ and FD

θ together with the generated dataset using the loss shown
in Equation (4).

L =

orthogonality of compressed representation︷ ︸︸ ︷
λgram∥FE

θ (zE)F
E
θ (zE)

⊤ − I∥2F
+ λgen∥FD

θ

(
FE
θ (zE)

)
− GT∥22︸ ︷︷ ︸

reconstruction loss

, (4)

where GT represents the synthetic ground-truth latents and ∥ · ∥F denotes the Frobenius norm.

The loss function includes an reconstruction loss term that allows us to minimize the difference
between the generated latents and the corresponding ground-truth latents. We also add another term,
which we refer to as gram loss. When training Squeeze3D with only the reconstruction loss term, we
found that they concentrate information along a small subset of dimensions, effectively rendering
many dimensions redundant.

To understand this, we empirically analyzed the latent vectors zcomp = FE
θ (zE) ∈ RdC produced

by our forward mapping network. For any batch of size B, of encoded 3D models {zEi
}Bi=1, we

can compute the matrix Z ∈ RB×dC where each row is FE
θ (zEi

). First, we observe that if we do
a singular value decomposition Z = UΣV⊤, the singular values in Σ = diag(σ1, σ2, . . . , σdC

)
exhibits an extremely skewed distribution: σ1 ≫ σ2 ≫ ... ≫ σdC

where σi represents the i-th
singular value of Z, arranged in descending order. The condition number κ = σ1

σdC
is typically very

large, indicating that the effective rank of Z is much lower than dC .

Second, we observe that the correlation matrix C = 1
BZ⊤Z ∈ RdC×dC has many off-diagonal

elements with large magnitudes in comparison with diagonal elements. This indicates that the
dimensions of the compressed representation encode redundant information. Particularly,

deff =
(
∑dC

i=1 λi)
2∑dC

i=1 λ
2
i

≪ dC , (5)

where λi are the eigenvalues. These observations indicate that most of the information in the
compressed representation was concentrated along a few dominant directions, with most dimensions
contributing negligibly. For compression, this represents a severe inefficiency in utilizing the available
parameter budget.

6

Draco NGF Corto Squeeze3D Ground Truth

Figure 4: Qualitative mesh compression results. We compare Squeeze3D to state-of-the-art
methods. Our approach maintains visually important geometric details. Additional results in§ C.

To address this, we propose the Gram loss term that is computed on the outputs of the first mapping
network FE

θ to force the outputs of FE
θ to be orthonormal. A semi-orthogonal matrix A ∈ Rm×n

is defined as a matrix that satisfies either AA⊤ = Im (if m ≤ n) or A⊤A = In (if n ≤ m). Our
gram loss term when minimized forces FE

θ (zE)F
E
θ (zE)

⊤ ≈ I, which is precisely the condition for
FE
θ (zE) to be a semi-orthogonal matrix (when dC ≤ dE).

4 Experiments

4.1 Experimental Setup

We train Squeeze3D to compress three 3D formats: textured 3D meshes, point clouds, and radiance
fields i.e. grids of (rgbσ). For 3D meshes, we train our approach with MeshAnything [12] as the
encoder and train mapping networks for three 3D generators: Shap-E [44], OpenLRM [36, 32],
and InstantMesh [115]. For point clouds, we train mapping networks for PointNet++ [80] as the
encoder and LION [119] as the decoder. For radiance fields, we train mapping networks for NeRF-
MAE [39] as the encoder and the generator. We compress radiance fields for evaluation to use
existing generation models such as [39] that only generate radiance fields in this format. We present
additional implementation details in Section 4.1. We also perform experiments on a separately-
sourced collection of meshes and radiance fields to evaluate the effectiveness of Squeeze3D for
out-of-distribution data in Appendix C and ablations in Appendix C.

Ground TruthSqueeze3D

Lorem ipsum

Draco†

Lorem ipsum

Figure 5: Qualitative point cloud compression
results. We show qualitative results comparing
Squeeze3D to state-of-the-art methods. Our ap-
proach achieves significantly higher compression
ratios while maintaining perceptually important
geometric details.

Training Dataset Creation. We use the method
described in Section 3.2 to train Squeeze3D for
each of our evaluated encoder-generator pair. We
now list the datasets that were used to create these
latent training datasets.

Shap-E [44] as the generator. We build a list of
2500 prompts using LLaMA3, each of which is
used four times to build a dataset of 10,000 objects
(details in the supplementary).

LRM [36, 32] or InstantMesh [115] as the gen-
erator. We rendered 10,000 random objects from
Objaverse [20] which serve as image conditions.
We also make sure that our rendering follows any
conventions the 3D generator expects the input
images to follow, for instance, white backgrounds
or no backgrounds.

LION [119] as the generator. We were able to generate plausible point clouds of 3D objects without
any conditioning data from random noise.

NeRF-MAE [39] as the generator. We generate radiance fields from the NeRF-MAE [39] dataset.

7

SparsePCGC VQRF Squeeze3D Ground Truth

Figure 6: Qualitative radiance field compression results. We show qualitative results comparing
Squeeze3D to state-of-the-art methods. Our approach achieves a significantly higher compression
ratio while maintaining visually important geometric details.

While many other compression methods require the 3D objects to have certain properties like
watertightness, we do not impose any such constraints. We split the datasets into training (80%), and
validation (10%) sets generated from our approach. We also built a test (10%) set of objects from the
datasets: Objaverse, ShapeNet, and NeRF-MAE, on which we report our metrics.

Evaluation metrics. We report the standard widely-used metrics, PSNR ↑, MS-SSIM ↑, and LPIPS
↓ [125] for reconstruction quality of meshes and radiance fields. We report standard metrics, PCQM
↑ [70], and PointSSIM ↑ [1] for reconstruction quality of point clouds. For all the baselines we
compare against, we report average compression ratios, as well as compression and decompression
times.

4.2 3D Mesh Compression

We compare Squeeze3D applied to mesh compression with existing approaches in Table 2.
While [120] achieves very high compression ratios on 3D meshes, we are unable to compare
Squeeze3D with it due to the absence of code and models, and thus qualitatively contrast in Sec-
tion 2.3. We make the following observations.

First, Squeeze3D achieves a mean compression ratio of 2187× (6.43MB→ 3 kB), compared to
state-of-the-art compression methods: DeepSDF [76], by more than an order of magnitude (131×,
6.43MB→ 49 kB). Despite this extreme compactness, Squeeze3D preserves perceptual quality,
achieving an LPIPS of 0.0274 versus 0.3704 for DeepSDF which completely fails to reconstruct
complex large meshes.

Second, Squeeze3D achieves similar reconstruction quality (LPIPS of 0.0274) as that of approaches
such as Draco∗ (LPIPS of 0.1039), Draco† (LPIPS of 0.0397), and Corto [49] (LPIPS of 0.1374).
Squeeze3D also achieves better quality than Neural Subdivision [62] and DeepSDF [76]. Though
compared to the state-of-the-art non-learned mesh compression, Squeeze3D cannot achieve as high
reconstruction quality, we note that Squeeze3D achieves a significantly higher compression ratio than
these approaches. Neural Geometry Fields [22] performs better in terms of quality and compression
ratios than non-learned methods but does significantly worse in terms of compression size when
compared with our approach. We conclude that in achieving very high compression rates, Squeeze3D
offers the highest reconstruction quality. Thus, we demonstrate that leveraging 3D generative models
is a promising approach for 3D compression.

While using Squeeze3D may not be as fast as some non-learned approaches like Draco [24] or
Corto [49], Squeeze3D is often faster than other learned methods. Squeeze3D is particularly much
faster than training a network per object, like in NGF [22]. NGF takes on average 152638 ms to
compress objects and 507 ms to decompress objects, compared to 270 ms to compress an object and
1476 ms to decompress objects for Squeeze3D. We qualitatively compare against Draco, Corto, and
NGF for compressing meshes in Figure 4. We note that the results from our approach retain high
visual quality due to the use of priors from a generative model.

4.3 3D Point Cloud Compression

We compare our method applied to 3D point cloud compression with previous approaches in Table 3.
We notice that our approach achieves a significantly higher compression ratio of 117 (117 / 1.00) opposed

8

Table 2: Mesh Compression Results. Quantitative comparison of Squeeze3D with state-of-the-art
3D mesh compression methods. We report compression ratio (CR), compression and decompression
times, and quality metrics (PSNR, MS-SSIM, and LPIPS). (±) represents standard deviations.

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
Draco∗ [24] + JPEG 6.9215 (6.43 / 0.93) 70.30 29.97 15.45 (±1.27) 0.7468 (±0.09) 0.2437 (±0.09)

Draco† [24] + JPEG 6.7001 (6.43 / 0.96) 69.05 28.33 23.33 (±1.32) 0.9576 (±0.03) 0.1039 (±0.06)

Draco‡ [24] + JPEG 6.6087 (6.43 / 0.97) 68.15 27.46 38.91 (±1.30) 0.9992 (±0.00) 0.0045 (±0.00)

Draco§ [24] + JPEG 6.1968 (6.43 / 1.04) 66.30 25.81 48.55 (±1.54) 1.0000 (±0.00) 0.0004 (±0.00)
Corto [49] + JPEG 45.93 (6.43 / 0.14) 50.52 8.20 20.92 (± 2.79) 0.8619 (± 0.08) 0.1374 (± 0.08)
Neural Subd. [62] + JPEG 11.28 (6.43 / 0.57) 61104.12 0.00 15.95 (±2.18) 0.8525 (±0.04) 0.1513 (±0.05)
DeepSDF [76] + JPEG 131.22 (6.43 / 0.05) 887.78 578.53 8.47 (± 0.23) 0.7039 (± 0.07) 0.3704 (± 0.08)
NGF [22] + JPEG 42.87 (6.43 / 0.15) 152637.87 507.21 35.45 (± 3.02) 0.9987 (± 0.08) 0.0054 (± 0.03)

Squeeze3D (InstantMesh) 2187.0748 (6.43 / 0.003) 270.24 1476.00 27.50 (±3.13) 0.9796 (±0.02) 0.0274 (±0.02)

Table 3: Point Cloud Compression. Quantitative comparision of Squeeze3D with state-of-the-art
point cloud compression methods. We report compression ratio (CR), compression and decompression
times, and quality metrics (PCQM and PointSSIM). (±) represents standard deviations.

Method CR (×) (KB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PCQM ↑ PointSSIM ↑
Draco‡ [24] 15.6417 (117 / 7.48) 0.35 0.34 3.2875 (± 0.13) 0.9722 (± 0.11)

Draco§ [24] 22.4138 (117 / 5.22) 0.25 0.23 2.1039 (± 0.08) 0.9535 (± 0.12)

Squeeze3D (LION) 58.5000 (117 / 2.00) 3.85 12.74 1.8437 (±1.13) 0.4484 (±0.11)

Table 4: Radiance Field Results. Quantitative comparison of Squeeze3D with state-of-the-art
3D radiance field compression methods. We report compression ratio (CR), compression and
decompression times, and quality metrics (PSNR, MS-SSIM, and LPIPS). (±) represents standard
deviations.

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
SparsePCGC [108] 78.9218 (58.07 / 0.74) 301.39 680.82 22.2588 ± 0.92 0.8947 ± 0.02 0.1400 ± 0.02
VQRF [54] 40.2493 (58.07 / 1.45) 120.14 20.58 29.5537 ± 0.01 0.9749 ± 0.00 0.0618 ± 0.00

Squeeze3D (NeRF-MAE) 619.4133 (58.07 / 0.09) 45.63 75.80 26.62 ± 2.57 0.9533 ± 0.04 0.0743 ± 0.02

to 22.41 (117 / 5.22) by previous approaches. Our approach, while achieving significantly higher
compression ratios, leads to only a 0.6898 lower PCQM. We show qualitative results in Figure 5.

4.4 Radiance Field Compression

We compare Squeeze3D applied to radiance field compression with SparsePCGC [108] and
VQRF [54] in Table 4. We choose these approaches to compare against since these works (or
a setting of these works), akin to our setup, only require (rgbσ) grids. We notice that our approach
achieves a significantly higher compression ratio of 619× opposed to 40× by previous approaches.
Squeeze3D achieves these significantly higher compression rates with only a 0.0125 drop in LPIPS.
We show qualitative results in Figure 6.

5 Discussion and Limitations

The most significant limitation of our approach is its inherent dependency on the quality and ex-
pressiveness of the underlying 3D generative model. The decompressed outputs from Squeeze3D
fundamentally cannot exceed the quality of what the generator can produce, as the generator serves as
both a prior knowledge base and a quality ceiling. In our evaluation, we observed that reconstruction
fidelity is directly correlated with the generative capabilities of the chosen generator model. For
instance, when using the Shap-E [44] generator, we found it challenging to faithfully reproduce highly
complex objects due to limitations in the model’s semantic capacity (Appendix C). This limitation,
however, positions Squeeze3D to benefit automatically from future advancements in 3D generative
modeling.

Since Squeeze3D is designed as a compression-decompression framework that should not require
per-scene retraining, the generalization capability of our mapping networks to unseen 3D models

9

is crucial. We evaluated this aspect by testing on a dataset of 158 3D meshes and 227 radiance
fields, which served as out-of-distribution samples, and found that our approach maintains consistent
performance in Appendix A. Nevertheless, for certain outlier cases where the input 3D model contains
features far from the distribution seen during training, compression quality may degrade. Thus, for
Squeeze3D to be effectively deployed in practical applications, a fallback mechanism would be
beneficial to handle such outlier cases. This could involve either a hybrid approach that combines our
method with traditional compression techniques or an adaptive system that detects when the mapping
networks are likely to produce low-quality results and switches to alternative compression methods.

6 Conclusion

In this work, we introduce Squeeze3D, a novel framework for 3D compression that leverages the rich
priors contained within existing 3D generation models. Our approach bridges arbitrary latent spaces
between different models, enabling unprecedented compression ratios while maintaining high visual
fidelity. The key benefit of our approach lies in its ability to use the semantic information already
encoded in pre-trained 3D generation models, effectively serving as a neural compressor. By training
networks that map between latent spaces, we eliminate the need for per-scene optimization that
plagues many neural compression methods. This results in faster compression and decompression
times compared to many other learned approaches while maintaining competitive visual quality
metrics. We hope this work inspires more research on using generative models for compressing 3D
data.

10

References
[1] Evangelos Alexiou and Touradj Ebrahimi. Towards a point cloud structural similarity metric. In 2020

IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pages 1–6, 2020.

[2] Anonymous. Diff-PCC: Diffusion-based neural compression for 3d point clouds, 2024.

[3] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of shapes from raw data. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2565–2574, 2020.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[5] Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Generative and discriminative voxel
modeling with convolutional neural networks, 2016.

[6] Edwin Catmull and James Clark. Recursively generated b-spline surfaces on arbitrary topological meshes.
In Seminal graphics: pioneering efforts that shaped the field, pages 183–188. 1998.

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An
information-rich 3d model repository, 2015.

[8] Jen-Hao Rick Chang, Yuyang Wang, Miguel Angel Bautista Martin, Jiatao Gu, Xiaoming Zhao, Josh
Susskind, and Oncel Tuzel. 3d shape tokenization via latent flow matching, 2025.

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In
European conference on computer vision, pages 333–350. Springer, 2022.

[10] Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and
Song Han. Deep compression autoencoder for efficient high-resolution diffusion models, 2025.

[11] Yihang Chen, Qianyi Wu, Mehrtash Harandi, and Jianfei Cai. How far can we compress instant-ngp-based
nerf? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 20321–20330, June 2024.

[12] Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Xin Chen, Zhongang Cai, Lei
Yang, Gang Yu, Guosheng Lin, and Chi Zhang. Meshanything: Artist-created mesh generation with
autoregressive transformers, 2024.

[13] Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao, Fangzhou Hong, Yushi Lan, Tengfei Wang, Haozhe
Xie, Tong Wu, Shunsuke Saito, et al. 3dtopia-xl: Scaling high-quality 3d asset generation via primitive
diffusion. arXiv preprint arXiv:2409.12957, 2024.

[14] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 5939–5948, 2019.

[15] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving simplification. In Proceed-
ings of the 25th annual conference on Computer graphics and interactive techniques, pages 115–122,
1998.

[16] Mingyue Cui, Junhua Long, Mingjian Feng, Boyang Li, and Huang Kai. Octformer: Efficient octree-based
transformer for point cloud compression with local enhancement. Proceedings of the AAAI Conference
on Artificial Intelligence, 37(1):470–478, Jun. 2023.

[17] Ruikai Cui, Weizhe Liu, Weixuan Sun, Senbo Wang, Taizhang Shang, Yang Li, Xibin Song, Han Yan,
Zhennan Wu, Shenzhou Chen, Hongdong Li, and Pan Ji. Neusdfusion: A spatial-aware generative model
for 3d shape completion, reconstruction, and generation, 2024.

[18] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. On the effectiveness of weight-encoded
neural implicit 3d shapes, 2021.

[19] Michael Deering. Geometry compression. In Proceedings of the 22nd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’95, page 13–20, New York, NY, USA, 1995.
Association for Computing Machinery.

[20] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha Kembhavi, Carl
Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-xl: A universe
of 10m+ 3d objects, 2023.

11

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

[22] Venkataram Edavamadathil Sivaram, Tzu-Mao Li, and Ravi Ramamoorthi. Neural geometry fields for
meshes. In ACM SIGGRAPH 2024 Conference Papers, SIGGRAPH ’24, New York, NY, USA, 2024.
Association for Computing Machinery.

[23] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2024.

[24] Frank Galligan, Michael Hemmer, Ondrej Stava, Fan Zhang, and Jamieson Brettle. Google/draco: a
library for compressing and decompressing 3d geometric meshes and point clouds, 2018.

[25] Juan D. Galvis, Xingxing Zuo, Simon Schaefer, and Stefan Leutengger. Sc-diff: 3d shape completion
with latent diffusion models, 2024.

[26] Quankai Gao, Qiangeng Xu, Hao Su, Ulrich Neumann, and Zexiang Xu. Strivec: Sparse tri-vector
radiance fields, 2023.

[27] Rui Gao and Rajeev K. Jaiman. H-siren: Improving implicit neural representations with hyperbolic
periodic functions, 2024.

[28] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, page
209–216, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[29] Cameron Gordon, Shin-Fang Chng, Lachlan MacDonald, and Simon Lucey. On quantizing implicit
neural representations. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 341–350, 2023.

[30] Sara Hahner and Jochen Garcke. Mesh convolutional autoencoder for semi-regular meshes of different
sizes. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pages 885–894, January 2022.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.
In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages
630–645, Cham, 2016. Springer International Publishing.

[32] Zexin He and Tengfei Wang. Openlrm: Open-source large reconstruction models. https://github.
com/3DTopia/OpenLRM, 2023.

[33] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[34] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. Deep geometric texture synthesis. arXiv
preprint arXiv:2007.00074, 2020.

[35] Georg Hess, Johan Jaxing, Elias Svensson, David Hagerman, Christoffer Petersson, and Lennart Svensson.
Masked autoencoder for self-supervised pre-training on lidar point clouds. In 2023 IEEE/CVF Winter
Conference on Applications of Computer Vision Workshops (WACVW), page 350–359. IEEE, January
2023.

[36] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d, 2024.

[37] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John McDonald, Jean
Schweitzer, and Werner Stuetzle. Piecewise smooth surface reconstruction. In Proceedings of the
21st annual conference on Computer graphics and interactive techniques, pages 295–302, 1994.

[38] Xiao Huo, Junhui Hou, Shuai Wan, and Fuzheng Yang. Rendering-oriented 3d point cloud attribute
compression using sparse tensor-based transformer, 2025.

[39] Muhammad Zubair Irshad, Sergey Zakharov, Vitor Guizilini, Adrien Gaidon, Zsolt Kira, and Rares
Ambrus. Nerf-mae: Masked autoencoders for self-supervised 3d representation learning for neural
radiance fields. In European Conference on Computer Vision, pages 434–453. Springer, 2024.

[40] Berivan Isik. Neural 3d scene compression via model compression. arXiv preprint arXiv:2105.03120,
2021.

12

https://github.com/3DTopia/OpenLRM
https://github.com/3DTopia/OpenLRM

[41] Yiping Ji, Hemanth Saratchandran, Cameron Gordon, Zeyu Zhang, and Simon Lucey. Efficient learning
with sine-activated low-rank matrices, 2025.

[42] Zhaoyang Jia, Jiahao Li, Bin Li, Houqiang Li, and Yan Lu. Generative latent coding for ultra-low bitrate
image compression. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 26088–26098, 2024.

[43] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas Funkhouser,
et al. Local implicit grid representations for 3d scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6001–6010, 2020.

[44] Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions, 2023.

[45] Yeonsung Jung, Heecheol Yun, Joonhyung Park, Jin-Hwa Kim, and Eunho Yang. Prunerf: Segment-
centric dataset pruning via 3d spatial consistency. arXiv preprint arXiv:2406.00798, 2024.

[46] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.

[47] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

[48] Adam R Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia Schneider, Sona Mokrá, and
Danilo Jimenez Rezende. Nerf-vae: A geometry aware 3d scene generative model. In International
Conference on Machine Learning, pages 5742–5752. PMLR, 2021.

[49] Visual Computing Lab. Corto: Mesh compression library. https://github.com/cnr-isti-vclab/
corto, 2025. Accessed: March 03, 2025.

[50] Yushi Lan, Fangzhou Hong, Shuai Yang, Shangchen Zhou, Xuyi Meng, Bo Dai, Xingang Pan, and
Chen Change Loy. Ln3diff: Scalable latent neural fields diffusion for speedy 3d generation. In European
Conference on Computer Vision, pages 112–130. Springer, 2024.

[51] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 21719–21728, June 2024.

[52] Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy Boubekeur, and Maks
Ovsjanikov. Spectral mesh simplification. Computer Graphics Forum, 39(2):315–324, 2020.

[53] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. Compressing volumetric radiance
fields to 1 mb. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4222–4231, 2023.

[54] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. Compressing volumetric radiance
fields to 1 mb. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4222–4231, 2023.

[55] Lingzhi Li, Zhongshu Wang, Zhen Shen, Li Shen, and Ping Tan. Compact real-time radiance fields
with neural codebook. In 2023 IEEE International Conference on Multimedia and Expo (ICME), pages
2189–2194. IEEE, 2023.

[56] Sicheng Li, Hao Li, Yiyi Liao, and Lu Yu. NeRFCodec: Neural Feature Compression Meets Neural
Radiance Fields for Memory-Efficient Scene Representation . In 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 21274–21283, Los Alamitos, CA, USA, June 2024. IEEE
Computer Society.

[57] Sicheng Li, Hao Li, Yiyi Liao, and Lu Yu. Nerfcodec: Neural feature compression meets neural radiance
fields for memory-efficient scene representation, 2024.

[58] Wei Li, Yufei Chen, Zhicheng Wang, Weidong Zhao, and Lin Chen. An improved decimation of triangle
meshes based on curvature. In Duoqian Miao, Witold Pedrycz, Dominik Ślezak, Georg Peters, Qinghua
Hu, and Ruizhi Wang, editors, Rough Sets and Knowledge Technology, pages 260–271, Cham, 2014.
Springer International Publishing.

[59] Yiming Li, Zhiding Yu, Christopher Choy, Chaowei Xiao, Jose M. Alvarez, Sanja Fidler, Chen Feng,
and Anima Anandkumar. Voxformer: Sparse voxel transformer for camera-based 3d semantic scene
completion, 2023.

13

https://github.com/cnr-isti-vclab/corto
https://github.com/cnr-isti-vclab/corto

[60] Zujie Liang and Fan Liang. Transpcc: Towards deep point cloud compression via transformers. In
Proceedings of the 2022 International Conference on Multimedia Retrieval, ICMR ’22, page 1–5, New
York, NY, USA, 2022. Association for Computing Machinery.

[61] Hao Liu, Hui Yuan, Qi Liu, Junhui Hou, and Ju Liu. A comprehensive study and comparison of core
technologies for mpeg 3-d point cloud compression. IEEE Transactions on Broadcasting, 66(3):701–717,
2019.

[62] Hsueh-Ti Derek Liu, Vladimir G Kim, Siddhartha Chaudhuri, Noam Aigerman, and Alec Jacobson.
Neural subdivision. arXiv preprint arXiv:2005.01819, 2020.

[63] Juncheng Liu, Steven Mills, and Brendan McCane. Variational autoencoder for 3d voxel compression. In
2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), pages 1–6,
2020.

[64] Charles Loop. Smooth subdivision surfaces based on triangles. 1987.

[65] Zhe Luo, Wenjing Jia, and Stuart W. Perry. Transformer-based geometric point cloud compression with
local neighbor aggregation. In DICTA, pages 223–228, 2023.

[66] Qi Ma, Yue Li, Bin Ren, Nicu Sebe, Ender Konukoglu, Theo Gevers, Luc Van Gool, and Danda Pani
Paudel. Shapesplat: A large-scale dataset of gaussian splats and their self-supervised pretraining. arXiv
preprint arXiv:2408.10906, 2024.

[67] Miguel Marques and Luís A. Da Silva Cruz. Explorations on 3d point clouds coding using transformers
and patches. In 2022 10th European Workshop on Visual Information Processing (EUVIP), pages 1–6,
2022.

[68] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon
Wetzstein. Acorn: Adaptive coordinate networks for neural scene representation, 2021.

[69] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 4460–4470, 2019.

[70] Gabriel Meynet, Yana Nehmé, Julie Digne, and Guillaume Lavoué. Pcqm: A full-reference quality
metric for colored 3d point clouds. In 2020 Twelfth International Conference on Quality of Multimedia
Experience (QoMEX), pages 1–6, 2020.

[71] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders Eriks-
son. Implicit surface representations as layers in neural networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4743–4752, 2019.

[72] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM, 65(1):99–106,
December 2021.

[73] Szilárd Molnár and Levente Tamás. Variational autoencoders for 3d data processing. Artificial Intelligence
Review, 57(2):42, 2024.

[74] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, July 2022.

[75] Anton Obukhov, Mikhail Usvyatsov, Christos Sakaridis, Konrad Schindler, and Luc Van Gool. TT-NF:
Tensor train neural fields, 2023.

[76] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 165–174, 2019.

[77] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional
occupancy networks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part III 16, pages 523–540. Springer, 2020.

[78] Tuan Pham and Stephan Mandt. Neural nerf compression. arXiv preprint arXiv:2406.08943, 2024.

[79] Rolandos Alexandros Potamias, Stylianos Ploumpis, and Stefanos Zafeiriou. Neural mesh simplification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18583–
18592, 2022.

14

[80] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[81] Marie-Julie Rakotosaona, Fabian Manhardt, Diego Martin Arroyo, Michael Niemeyer, Abhijit Kundu,
and Federico Tombari. Nerfmeshing: Distilling neural radiance fields into geometrically-accurate 3d
meshes, 2023.

[82] Andres Ramirez-Jaime, Gonzalo R. Arce, Nestor Porras-Diaz, Oleg Ieremeiev, Andrii Rubel, Vladimir
Lukin, Mateusz Kopytek, Piotr Lech, Jarosław Fastowicz, and Krzysztof Okarma. Generative diffusion
models for compressed sensing of satellite lidar data: Evaluating image quality metrics in forest landscape
reconstruction. Remote Sensing, 17(7), 2025.

[83] Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. Xcube:
Large-scale 3d generative modeling using sparse voxel hierarchies. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2024.

[84] Barbara Roessle, Norman Müller, Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder, Angela Dai,
and Matthias Nießner. L3dg: Latent 3d gaussian diffusion. In SIGGRAPH Asia 2024 Conference Papers,
December 2024.

[85] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi,
editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pages 234–241,
Cham, 2015. Springer International Publishing.

[86] J. Rossignac. Edgebreaker: connectivity compression for triangle meshes. IEEE Transactions on
Visualization and Computer Graphics, 5(1):47–61, 1999.

[87] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of triangle meshes.
SIGGRAPH Comput. Graph., 26(2):65–70, July 1992.

[88] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar, Philip A Chou,
Robert A Cohen, Maja Krivokuća, Sébastien Lasserre, Zhu Li, et al. Emerging mpeg standards for
point cloud compression. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
9(1):133–148, 2018.

[89] Yiting Shao, Xiaodong Yang, Wei Gao, Shan Liu, and Ge Li. 3d point cloud attribute compression using
diffusion-based texture-aware intra prediction. IEEE Transactions on Circuits and Systems for Video
Technology, 34(10):9633–9646, 2024.

[90] Nicholas Sharp et al. Polyscope, 2019. www.polyscope.run.

[91] William Shen and Willie McClinton. Accelerating nerfs: Optimizing neural radiance fields with special-
ized hardware architectures.

[92] Jinglei Shi and Christine Guillemot. Distilled low rank neural radiance field with quantization for light
field compression. arXiv preprint arXiv:2208.00164, 2022.

[93] Seungjoo Shin and Jaesik Park. Binary radiance fields. Advances in neural information processing
systems, 36, 2024.

[94] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav Rosov,
Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-only transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
19615–19625, June 2024.

[95] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
7462–7473. Curran Associates, Inc., 2020.

[96] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Continuous
3d-structure-aware neural scene representations. Advances in Neural Information Processing Systems, 32,
2019.

15

[97] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958, 2014.

[98] Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, pages 20–30, 2003.

[99] Andrzej Szymczak, Jarek Rossignac, and Davis King. Piecewise regular meshes: Construction and
compression. Graphical Models, 64(3-4):183–198, 2002.

[100] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire, Alec Jacobson,
and Sanja Fidler. Variable bitrate neural fields. In ACM SIGGRAPH 2022 Conference Proceedings,
SIGGRAPH ’22, New York, NY, USA, 2022. Association for Computing Machinery.

[101] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai,
Alec Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of detail: Real-time rendering
with implicit 3D shapes. 2021.

[102] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high
frequency functions in low dimensional domains. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 7537–7547.
Curran Associates, Inc., 2020.

[103] Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang Zeng. Compressible-composable nerf via
rank-residual decomposition. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 14798–14809. Curran
Associates, Inc., 2022.

[104] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong Wang, and Gang Zeng. Del-
icate textured mesh recovery from nerf via adaptive surface refinement. arXiv preprint arXiv:2303.02091,
2022.

[105] Gabriel Taubin and Jarek Rossignac. Geometric compression through topological surgery. ACM Trans.
Graph., 17(2):84–115, April 1998.

[106] Costa Touma and Craig Gotsman. Triangle mesh compression. Proceedings - Graphics Interface, pages
26–34, 1998. Graphics Interface ’98 ; Conference date: 18-06-1998 Through 20-06-1998.

[107] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learning. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[108] Jianqiang Wang, Dandan Ding, Zhu Li, Xiaoxing Feng, Chuntong Cao, and Zhan Ma. Sparse tensor-based
multiscale representation for point cloud geometry compression. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(7):9055–9071, 2023.

[109] Jiaxin Wang, Weichen Dai, Kangcheng Ma, and Wanzeng Kong. Neural radiance fields with hash-low-rank
decomposition. Applied Sciences, 14(23), 2024.

[110] Christopher Wewer, Kevin Raj, Eddy Ilg, Bernt Schiele, and Jan Eric Lenssen. latentsplat: Autoencoding
variational gaussians for fast generalizable 3d reconstruction. In European Conference on Computer
Vision, pages 456–473. Springer, 2024.

[111] Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao
Yao. Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. arXiv preprint
arXiv:2405.14832, 2024.

[112] Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. arXiv preprint
arXiv:2412.01506, 2024.

[113] Xiufeng Xie, Riccardo Gherardi, Zhihong Pan, and Stephen Huang. Hollownerf: Pruning hashgrid-based
nerfs with trainable collision mitigation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3480–3490, 2023.

[114] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari,
James Tompkin, Vincent sitzmann, and Srinath Sridhar. Neural fields in visual computing and beyond.
Computer Graphics Forum, 41(2):641–676, 2022.

16

[115] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. Instantmesh:
Efficient 3d mesh generation from a single image with sparse-view large reconstruction models. arXiv
preprint arXiv:2404.07191, 2024.

[116] Xiaoxuan Yang, Guo Lu, Donghui Feng, Zhengxue Cheng, Guosheng Yu, and Li Song. Coarse-to-fine
transformer for lossless 3d medical image compression. In 2024 IEEE International Conference on Visual
Communications and Image Processing (VCIP), pages 1–5, 2024.

[117] Yiying Yang, Wen Liu, Fukun Yin, Xin Chen, Gang Yu, Jiayuan Fan, and Tao Chen. Vq-nerf: Vector
quantization enhances implicit neural representations. arXiv preprint arXiv:2310.14487, 2023.

[118] Maciej Zamorski, Maciej Zięba, Piotr Klukowski, Rafał Nowak, Karol Kurach, Wojciech Stokowiec, and
Tomasz Trzciński. Adversarial autoencoders for compact representations of 3d point clouds. Computer
Vision and Image Understanding, 193:102921, 2020.

[119] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis.
Lion: Latent point diffusion models for 3d shape generation. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[120] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape repre-
sentation for neural fields and generative diffusion models. ACM Transactions On Graphics (TOG),
42(4):1–16, 2023.

[121] Bowen Zhang, Tianyu Yang, Yu Li, Lei Zhang, and Xi Zhao. Compress3d: A compressed latent space
for 3d generation from a single image. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky,
Torsten Sattler, and Gül Varol, editors, Computer Vision – ECCV 2024, pages 276–292, Cham, 2025.
Springer Nature Switzerland.

[122] Jinzhi Zhang, Feng Xiong, and Mu Xu. 3d representation in 512-byte:variational tokenizer is the key for
autoregressive 3d generation, 2024.

[123] Jinzhi Zhang, Feng Xiong, and Mu Xu. G3pt: Unleash the power of autoregressive modeling in 3d
generation via cross-scale querying transformer. arXiv preprint arXiv:2409.06322, 2024.

[124] Junteng Zhang, Gexin Liu, Dandan Ding, and Zhan Ma. Transformer and upsampling-based point cloud
compression. In Proceedings of the 1st International Workshop on Advances in Point Cloud Compression,
Processing and Analysis, APCCPA ’22, page 33–39, New York, NY, USA, 2022. Association for
Computing Machinery.

[125] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 586–595, 2018.

[126] Zhiyu Zhang, Guo Lu, Huanxiong Liang, Zhengxue Cheng, Anni Tang, and Li Song. Rate-aware
compression for nerf-based volumetric video. In Proceedings of the 32nd ACM International Conference
on Multimedia, pages 3974–3983, 2024.

[127] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin Fu, Tao Chen, Gang Yu, and
Shenghua Gao. Michelangelo: Conditional 3d shape generation based on shape-image-text aligned latent
representation. Advances in neural information processing systems, 36:73969–73982, 2023.

[128] Hongliang Zhong, Jingbo Zhang, and Jing Liao. Vq-nerf: Neural reflectance decomposition and editing
with vector quantization. IEEE Transactions on Visualization and Computer Graphics, 30(9):6247–6260,
2023.

[129] Yi Zhou, Chenglei Wu, Zimo Li, Chen Cao, Yuting Ye, Jason Saragih, Hao Li, and Yaser Sheikh. Fully
convolutional mesh autoencoder using efficient spatially varying kernels. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 9251–9262. Curran Associates, Inc., 2020.

[130] Denis Zorin, Peter Schröder, and Wim Sweldens. Interpolating subdivision for meshes with arbitrary
topology. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
pages 189–192, 1996.

17

Appendix Contents

A Additional Implementation Details 18

A.1 Network Design . 18

A.2 Training . 19

B Evaluation Details 20

B.1 Baselines . 20

B.2 Collection of Additional Meshes for Evaluation 21

B.3 Collection of Additional Radiance Fields for Evaluation 21

C Additional Results 21

C.1 Results on our Mesh Collection . 21

C.2 Results on our Radiance Field Collection . 21

C.3 Qualitative Results on Meshes. 22

C.4 Ablations . 22

D Societal Impact 23

E Results Library 24

A Additional Implementation Details

We share additional implementation details to reproduce Squeeze3D.

A.1 Network Design

Feature
Input

Feature
Output

Flatten

LayerNorm
Linear

GELU
Dropout

x2

Linear

M
esh M

apping N
etw

orks

Feature
Input

Flatten

Linear

Point C
loud M

apping N
etw

orks

LayerNorm
GELU

Dropout

Linear

GELU
Dropout

x12

Linear

Feature

Feature
Input

Flatten

Linear

R
adiance Field M

apping N
etw

orks

Conv3D
LayerNorm3D

GELU

ResidualBlock3D
Dropout3D

Conv3D
LayerNorm3D

GELU
x2

x4

ResidualBlock3D
Dropout3D
ConvT3D

LayerNorm3D
GELU

x2

ResidualBlock3D
ResidualBlock3D

Feature
Output

(a) (b) (c)
Output

Figure 7: Network Architectures.

For each of the encoder-decoder pairs, we train
the mapping networks, which are feed-forward
neural networks. We summarize network archi-
tectures in Figure 7.

Meshes. The mapping networks together first
flatten the input and apply a linear layer to
project it into a hidden dimension. This is fol-
lowed by LayerNorm [4], a GELU nonlinear-
ity [33], and dropout [97]. A second linear
layer then produces another hidden represen-
tation, which is added residually to the output of
the first linear layer and passed through a second
LayerNorm. After another GELU and dropout,
a final linear transformation projects into the
latent space.

Point Clouds. The mapping networks to-
gether consist of flattening the input, a lin-
ear projection feeds into a LayerNorm [4];
this normalised vector is stored as a global
residual. The sequence then passes through
GELU-activated [33] hidden layers of uniform

18

width, each followed by dropout regularisa-
tion on the activations [97]. We use two
skip-connection schemes: (i) the global residual is re-added immediately after the first hidden
layer, and (ii) every fourth hidden layer receives a local residual that adds its own input to its output,
creating short four-layer paths. A final linear projection transforms the resulting representation into
the target latent space.

Radiance Fields. The mapping networks together consist of a custom LayerNorm that first permutes
tensors so that LayerNorm [4] can operate across channels before restoring the usual NCDHW layout.
We then build ResidualBlocks, which mirrors a bottleneck ResNet-V2 design [31]: a 3 × 3 × 3
conv–LN–GELU [33] stem, a 1 × 1 × 1 → 3 × 3 × 3 bottleneck branch that doubles the channel
count, and two skip paths: (i) projection shortcut for stride/width mismatches and (ii) “within-block”
residual that re-adds the pre-bottleneck activation just before the final GELU. The encoder begins
with a 96-channel input, expands to 192 channels, and applies two strided ResidualBlock units to
down-sample from 403 latents to 203 and then 103. Thus we have a narrow bottleneck of 24 channels
that serves as the latent code. The symmetric decoder inverts this pathway with a 3×3×3 convolution,
residual processing, and two transposed-conv up-sampling stages that restore the original resolution,
all regularised by spatial Dropout in 3D. U-Net–style [85] skip connections add encoder feature maps
to decoder activations whenever spatial dimensions match.

A.2 Training

Table 5: Model Sizes. We show the combined size
of the forward mapping network and the reverse map-
ping network we train for each setting. We denote the
compressed size in parentheses (·) for the point cloud
methods.

Encoder-Decoder Pair zcomp Parameters (M)

MeshAnything [12]-InstantMesh [115] 770 96.12
MeshAnything [12]-Open LRM [36, 32] 1024 87.51
MeshAnything [12]-Shap-E [44] 1024 134.53

PointNet++ [80]-LION [119] 1024 2.11
PointNet++ [80]-LION [119] 2048 6.53
PointNet++ [80]-LION [119] 4096 22.29
PointNet++ [80]-LION [119] 8192 81.48

NeRF-MAE [39] 24000 86.46

Our results are collected on an Intel(R)
Core(TM) i7-13700K CPU machine with
one NVIDIA RTX4090 GPU and 128GB
memory. We list the choices we make
during training for each encoder-generator
pair.

For all the models we train with Me-
shAnything [12] as the encoder, we use
the 350 million parameter version of Me-
shAnything and use the features created
by MeshAnything as the encoded inputs.
These encoded inputs (257, 1024) are
relatively larger compared to our desired
compression size.

MeshAnything [12]-InstantMesh [115]. While generating the dataset, we ensure that the input
condition images are in the RGBA format and have no background. We experiment to have the
mapping networks generate: multiview ViT embeddings [21] that InstantMesh uses as well as the
triplane representation InstantMesh uses. We experimentally observed better performance with
generating triplane representations, thus our results report this setting.

MeshAnything [12]-Open LRM [36, 32]. While generating the dataset, we ensure that the
input condition images are in the RGBA format and have no background. Due to the lack of
public code for the LRM, we use the OpenLRM implementation. We experiment with both
the openlrm-mix-base-1.1 and openlrm-obj-base-1.1, and we experimentally observed the
openlrm-obj-base-1.1 to have better performance. We train the mapping networks to generate
the triplane latents for LRM.

MeshAnything [12]-Shap-E [44]. We experiment with Shap-E in the text-to-image mode. The
mapping networks generate the implicit MLP representations.

PointNet++ [80]-LION [119]. We experiment with the SSG and MSG versions of PointNet++ and
experimentally observed SSG without normals to work the best. We use the PointNet++ checkpoints
pre-trained for classification. We consider the outputs from the point set feature learning module as
the encoded representations. We use the all categories model for LION. The mapping networks are
trained to generate both the global and local latents for LION.

19

Table 6: Training Hyperparameters. We show the training hyperparameters for the mapping
networks we train.

Hyperparameter LRM Shap-E InstantMesh NeRF-MAE

Training Precision FP-32 FP-32 FP-32 FP-32
Compressed Size 1024 1024 770 24000
Dropout 0.35 0.35 0.35 0.2
Epochs 700 700 700 2000
Batch Size 16 8 16 4
Optimizer Muon Adam Muon Muon

Optimizer Parameters
λ = 10−2

NS = 6 β1 = 0.9 NS = 6 NS = 6
β = 0.95 β2 = 0.999 β = 0.95 β = 0.95

Initial Learning Rate 10−2 10−4 10−3 10−2

Final Learning Rate 10−7 10−4 10−7 10−5

Scheduler Linear Decay Constant Linear Decay Linear Decay
Epochs Decay 700 N/A 600 1000
Gradient Accum. Steps 1 2 1 1
Gradient Clipping None None None None

Hyperparameter LION (1024) LION (2048) LION (4096) LION (8192)

Training Precision FP-32 FP-32 FP-32 FP-32
Hidden Size 1024 2048 4096 8192
Dropout 0.3 0.3 0.3 0.3
Epochs 4000 4000 1000 400
Batch Size 16 16 16 16
Optimizer Muon Muon Muon Muon

Optimizer Parameters β = 0.95 β = 0.95 β = 0.95 β = 0.95
NS = 6 NS = 6 NS = 6 NS = 6

Initial Learning Rate 10−3 10−3 10−3 10−3

Final Learning Rate 10−7 10−7 10−7 10−7

Scheduler Linear Decay Linear Decay Linear Decay Linear Decay
Epochs Decay 1000 1000 1000 1000
Gradient Accum. Steps 1 1 1 1
Gradient Clipping None None None None

We provide the model sizes in Table 5. We provide the hyperparameters we use to train the mapping
networks in Table 6.

B Evaluation Details

B.1 Baselines

Meshes. We compare Squeeze3D against non-learned baselines: Draco [24] (with multiple settings)
and Corto [49], the best performing mesh compression techniques. For all settings of Draco, we use a
compression level of 10. The setting § represents 14 bits for the position attribute, 14 bits for texture
coordinates, 14 bits for normal vector attributes, and 14 bits for any generic attribute. The setting ‡

represents 11 bits for the position attribute, 10 bits for texture coordinates, 8 bits for normal vector
attributes, and 8 bits for any generic attribute. The setting † represents 7 bits for the position attribute,
7 bits for texture coordinates, 7 bits for normal vector attributes, and 7 bits for any generic attribute.
The setting ∗ represents 4 bits for the position attribute, 4 bits for texture coordinates, 4 bits for
normal vector attributes, and 4 bits for any generic attribute. We also compare our approach against
learned approaches: Neural Subdivision [62], DeepSDF [76], and Neural Geometry Fields [22]. All
the baseline models we compare against do not support texture images, thus we pair these methods
with JPEG to compress the accompanying texture images.

20

Table 7: Mesh Compression Results. Quantitative comparison of Squeeze3D for compressing
meshes from our collection of meshes (Appendix B.2).

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
Ours 1933.33 (5.80 / 0.003) 270.24 1476.00 26.6353 0.9905 0.0124

Point Clouds. We compare Squeeze3D against Draco [24], the best performing point cloud com-
pression technique. For all settings of Draco, we use a compression level of 10. The setting §

represents 14 bits for the position attribute, 14 bits for texture coordinates, 14 bits for normal vector
attributes, and 14 bits for any generic attribute. The setting ‡ represents 11 bits for the position
attribute, 10 bits for texture coordinates, 8 bits for normal vector attributes, and 8 bits for any generic
attribute.

Radiance Fields. We compare Squeeze3D against SparsePCGC [108], and VQRF [54], the best
performing applicable techniques to radiance field compression. Particularly, note that our method
compresses arbitrary radiance fields and thus most existing NeRF and 3D Gaussian Splat compression
echniques are not applicable to our problem. To evaluate VQRF [54], we use the voxel pruning and
vector quantization steps which are relevant for compressing radiance field grids.

B.2 Collection of Additional Meshes for Evaluation

Since Squeeze3D is designed as a compression-decompression framework that should not require
per-scene retraining, the generalization capability of our mapping networks to unseen 3D models is
very important. Thus, we also collected a dataset of 158 high-quality 3D meshes from the following
sources,

• OpenLRM Demo: https://huggingface.co/spaces/zxhezexin/OpenLRM

• InstantMesh Demo: https://huggingface.co/spaces/TencentARC/InstantMesh

• Hunyuan3D-2 Demo: https://huggingface.co/spaces/tencent/Hunyuan3D-2

• TRELLIS Demo: https://huggingface.co/spaces/JeffreyXiang/TRELLIS

• SPAR3D Demo: https://huggingface.co/spaces/stabilityai/
stable-point-aware-3d

• SORA-3D Demo: https://huggingface.co/spaces/ginipick/SORA-3D

B.3 Collection of Additional Radiance Fields for Evaluation

Since Squeeze3D is designed as a compression-decompression framework that should not require
per-scene retraining, the generalization capability of our mapping networks to unseen 3D models is
very important. Thus, we also report results on the unseen “ai” subset of the NeRF-MAE dataset [39].

C Additional Results

C.1 Results on our Mesh Collection

To demonstrate that our approach can compress meshes which are not in the same distribution that
our training dataset was derived from: Objaverse [20], we report the results of our method with
MeshAnything [12] as the encoder and InstantMesh [115] as the generator in Table 7. Our mapping
networks are trained on the dataset we derived from Objaverse [20], but we test Squeeze3D on our
collection of meshes. On our collection of meshes, Squeeze3D achieves on average only a 0.86 dB
reduction in the PSNR and a 0.015 reduction in LPIPS.

C.2 Results on our Radiance Field Collection

Our mapping networks are trained on the dataset we derived from NeRF-MAE [39], but we test
Squeeze3D on only the radiance fields in the ai subset of the dataset which was collected by seprately

21

https://huggingface.co/spaces/zxhezexin/OpenLRM
https://huggingface.co/spaces/TencentARC/InstantMesh
https://huggingface.co/spaces/tencent/Hunyuan3D-2
https://huggingface.co/spaces/JeffreyXiang/TRELLIS
https://huggingface.co/spaces/stabilityai/stable-point-aware-3d
https://huggingface.co/spaces/stabilityai/stable-point-aware-3d
https://huggingface.co/spaces/ginipick/SORA-3D

Table 8: Radiance Field Results. Quantitative comparison of Squeeze3D for compressing radiance
fields from the ai subset of the NeRF-MAE dataset (Appendix B.3).

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
Ours 657.8888 (59.21 / 0.09) 45.63 75.80 22.40 0.8958 0.1400

Linear Interpolation

Figure 8: Interpolation. The compressed representations we obtain can also be interpolated. In these
examples we obtain the compressed representation for the leftmost and rightmost meshes and linearly
interpolate between them.

Ground Truth Reconstruction

Figure 9: Multi-view visualization of compressed and reconstructed meshes. The consistent ap-
pearance across different viewing angles demonstrates that Squeeze3D learns correct transformations
between latent spaces and produces coherent 3D reconstructions. This confirms that our compressed
representation encodes complete 3D information rather than view-dependent features.

than other datsets. On our collection of meshes, Squeeze3D achieves on average only a 4.22 dB
reduction in the PSNR as we show in Table 8.

C.3 Qualitative Results on Meshes.

We also notice that our approach works well with high-resolution complex meshes as we show
in Figure 12. In Figure 9, we show a mesh we reconstruct with our method through multiple camera
angles to demonstrate that our approach learns a correct transformation between the latent spaces and
the reconstruction is consistent. We also observe that the compression representation our method
learns can also be interpolated as we show in Figure 8. In Figure 11 we show examples using two
different generative models indicating that Squeeze3D can be extended to use other generative models
for compression. In Figure 10, we observe that our method learns to effectively represent intricate
geometrical details.

C.4 Ablations

We conduct several ablation studies to better understand the behavior of Squeeze3D and analyze the
trade-offs between compression ratio, reconstruction quality, and computational efficiency. First,
we investigate how varying the size of our compressed representation affects decompression time.
In Table 9, we show that the compressed size affects the compression and decompression times

22

ReconstructedGround Truth

Figure 10: Squeeze3D preserves geometry details. We show some meshes compressed with
Squeeze3D as wireframes. Notice that Squeeze3D preserves many finegrained geometric details.

Table 9: Ablations. Ablation study on compressed representation size. We analyze how varying the
dimensionality of the compressed latent space affects compression time, decompression time, and
reconstruction quality (measured by PCQM and PointSSIM).

Size (zcomp) Compression (s) Decompression (s) PCQM ↑ PointSSIM ↑
1024 3.44 12.33 1.4047 0.3640
2048 3.51 12.39 1.3311 0.4249
4096 3.85 12.74 1.8437 0.4318
8192 5.3 14.19 1.5665 0.4473

proportionally since changes in the compressed size affect the size of the neural network. Next, we
examine how different compression sizes affect reconstruction quality. Table 9 shows a correlation
between latent dimension and reconstruction quality. We observe substantial improvements in
PointSSIM when increasing the compressed size from 1024 to 2048, however, this improvement in
quality starts diminishing beyond the compressed size of 2048.

D Societal Impact

Our method has the potential to advance social good by lowering the bandwidth, storage, and energy
requirements associated with the ever-growing volumes of 3D data. By shrinking large meshes, point
clouds, and radiance fields to kilobytes, Squeeze3D can make high-fidelity 3D assets practical for
mobile devices, distance learning, cultural-heritage archiving, and tele-presence, thereby broadening
access to immersive content while also reducing the carbon footprint of cloud infrastructure. How-
ever, extreme compression built on powerful generative priors also carries risks: it may facilitate
unauthorized replication and distribution of copyrighted 3D models; compressed latents could be

23

OpenLRM

Shap-E

Ground Truth Reconstructed

Figure 11: Compression results using different 3D genera-
tors. Squeeze3D is agnostic to the choice of a 3D generation
model. Thus, we show compression results with the 3D gener-
ators: OpenLRM, and Shap-E. We choose 3D meshes that lie
in the representation capacity of the chosen 3D generators.

Reconstructed (comp. 0.003 MB)
 V: 72595, F: 11516

Ground Truth (8.2 MB)
 V: 77851, F: 120812

Figure 12: Compressing Complex
Meshes. Squeeze3D can be used to
compress highly complex textured
3D meshes (in this case 77851 ver-
tices and 120812 faces).

used to conceal contraband or embed hidden payloads; and the ease of disseminating photorealistic
3D scenes may accelerate the creation of deceptive “deep-fake” environments.

E Results Library

We present additional results in Figures 13 to 25.

24

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 13: Results Library.

25

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 14: Results Library.

26

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 15: Results Library.

27

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 16: Results Library.

28

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 17: Results Library.

29

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 18: Results Library.

30

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 19: Results Library.

31

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 20: Results Library.

32

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 21: Results Library.

33

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 22: Results Library.

34

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 23: Results Library.

35

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 24: Results Library.

36

Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 25: Results Library.

37

	Introduction
	Related Works
	Compressing Explicit 3D Representations
	Neural Graphic Primitives
	3D Autoencoders and Generators

	Method
	Bridging Latent Spaces
	Training Squeeze3D

	Experiments
	Experimental Setup
	3D Mesh Compression
	3D Point Cloud Compression
	Radiance Field Compression

	Discussion and Limitations
	Conclusion
	Appendix Contents
	Additional Implementation Details
	Network Design
	Training

	Evaluation Details
	Baselines
	Collection of Additional Meshes for Evaluation
	Collection of Additional Radiance Fields for Evaluation

	Additional Results
	Results on our Mesh Collection
	Results on our Radiance Field Collection
	Qualitative Results on Meshes.
	Ablations

	Societal Impact
	Results Library

