
Squeeze3D: Your 3D Generation Model is Secretly an
Extreme Neural Compressor

Rishit Dagli Yushi Guan Sankeerth Durvasula
Mohammadreza Mofayezi Nandita Vijaykumar

University of Toronto
{rishit, guanyushi, sankeerth, mofayezi, nandita}@cs.toronto.edu

squeeze3d.github.io

Abstract

We propose Squeeze3D, a novel framework that leverages implicit prior knowledge
learnt by existing pre-trained 3D generative models to compress 3D data at ex-
tremely high compression ratios. Our approach bridges the latent spaces between a
pre-trained encoder and a pre-trained generation model through trainable mapping
networks. Any 3D model represented as a mesh, point cloud, or a radiance field is
first encoded by the pre-trained encoder and then transformed (i.e. compressed)
into a highly compact latent code. This latent code can effectively be used as
an extremely compressed representation of the mesh or point cloud. A mapping
network transforms the compressed latent code into the latent space of a powerful
generative model, which is then conditioned to recreate the original 3D model
(i.e. decompression). Squeeze3D is trained entirely on generated synthetic data
and does not require any 3D datasets. The Squeeze3D architecture can be flexibly
used with existing pre-trained 3D encoders and existing generative models. It can
flexibly support different formats, including meshes, point clouds, and radiance
fields. Our experiments demonstrate that Squeeze3D achieves compression ratios
of up to 2187× for textured meshes, 55× for point clouds, and 619× for radi-
ance fields while maintaining visual quality comparable to many existing methods.
Squeeze3D only incurs a small compression and decompression latency since it
does not involve training object-specific networks to compress an object.

1 Introduction

The rapid advancement of 3D data acquisition and representation technologies over the past decade
has significantly expanded the availability and generation of high-resolution 3D content across various
domains in different formats, including, meshes, point clouds, and radiance fields (which could be
extracted from a NeRF [72] or a 3DGS [46]). The widespread use of 3D data necessitates the
development of techniques that enable efficient transmission, storage, and processing of large-scale
3D representations. To this end, compression and the use of compressed representations for 3D data
are of utmost importance, e.g., in streaming, autonomous navigation, digital twins, remote sensing.

A large body of research proposes techniques to compress meshes, point clouds, neural radiance
fields (NeRFs) [72], and 3D Gaussian Splats (3DGS) [46]. These approaches aim to maximize
the compression ratio while retaining reconstruction quality. For example, traditional mesh deci-
mation techniques [87, 28, 58, 52] remain foundational for polygon reduction, but their reliance
on handcrafted simplification rules limits their ability to preserve fine geometric details at extreme
compression ratios. MPEG’s G-PCC and V-PCC standards [88, 61] use projection-based methods for
point cloud compression; however, these approaches incur overheads for representing fine details
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Original: 1016.18 MB
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Figure 1: We showcase extreme compression of 3D models while preserving perceptual quality. Top:
Our method compresses a diverse collection of 3D models in various formats: meshes, point clouds,
and radiance fields. Bottom: Detailed comparison between the original “Pikachu” model (6.11 MB)
and the reconstruction after compression. The object was compressed to merely 0.003 MB.

and packing. Prior works also propose a range of compression methods for NeRFs [56, 22, 100, 74]
or 3DGS models [23, 51]. Several works propose autoencoder-style networks that compress 3D
models into small latent vectors [121, 30, 129, 10]. Usually, the compression ratios achieved by these
methods are of the order of 100x for meshes and the order of 10x for point clouds, but typically much
lower.

Our goal is to develop a framework for extreme compression of 3D data stored in any format
while retaining high visual quality. Recent years have seen significant and continued advances and
development of powerful generative models. In this work, we aim to leverage the implicit prior
knowledge learnt by the powerful 3D generative models [115, 44] to enable extreme compression
ratios. Recent works also propose techniques to leverage generative models for 3D compression [122,
17, 121, 107, 123, 8, 84] and in one case achieves extreme compression for meshes [122]. However,
these approaches require training specialized encoders and generative models for a single 3D format.
In contrast, our goal is to flexibly use existing encoders and generator models that provide adaptability
as encoders/generative models evolve and flexibility across 3D formats.

We propose Squeeze3D, a compression framework, that generates a highly compressed latent vector
that can be used to recreate the original 3D data using an existing pre-trained generative model.
Squeeze3D comprises three key components: (1) the input 3D data is encoded with a pre-trained
encoder. This allows us to extend Squeeze3D to other 3D encoders. (2) We train two small neural
networks that we call forward mapping network and reverse mapping network. The forward mapping
network maps the encoded representations into an extremely compressed latent space. The reverse
mapping network converts the code from the compressed latent space to the latent space of the
generative model. (3) We use a pre-trained generation model to generate the original 3D data using
the code generated by the reverse mapping network. Squeeze3D can be flexibly implemented with
any pre-trained encoder and generative model.

The forward and reverse mapping networks are trained for any given encoder-generator pair. We
first artificially generate a 3D dataset via random prompts to the generator model. This 3D dataset is
encoded using the pre-trained encoder. The set of latents produced from the pre-trained encoders
(training inputs) and their corresponding latents from the pre-trained generator (ground truth) are
used to train the forward and reverse mapping networks. We propose a loss function that minimizes
redundant information in the compressed latent space.
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Squeeze3D can be flexibly applied to 3D data in different formats. We implement and evaluate
our method for mesh, point cloud, and radiance field compression using 3 existing encoders and
5 existing generative models. We demonstrate that our method achieves significantly higher or
on-par compression ratios than any existing compression technique for meshes, point clouds, and
radiance fields with reconstruction quality that is on par with many prior approaches. We demonstrate
a compression ratio of 2187× for a subset of the Objaverse [20] dataset, 55× on a subset of
ShapeNet [7], 614.9× on a collection of radiance fields [39]. While Squeeze3D expectedly cannot
achieve state-of-the-art reconstruction quality, we qualitatively show that it is able to retain high
visual quality.

Contributions. (1) To the best of our knowledge, this is the first framework that leverages pre-
existing pre-trained generative models to enable extreme compression of 3D data.

(2) We demonstrate the feasibility of establishing correspondences between disparate latent manifolds
originating from neural architectures with fundamentally different structures, optimization objectives,
and training distributions.

(3) We evaluate Squeeze3D for mesh, point cloud, and radiance field compression and demonstrate
that generative models are a promising approach for extreme compression of 3D models. Squeeze3D
can be flexibly extended to different encoders, generative models, and 3D formats.

2 Related Works

2.1 Compressing Explicit 3D Representations

Classical compression techniques for meshes include approaches that reorder the structure of triangles
and faces in the mesh to enable compressed encodings of elements based on their local structure
and perform quantization [19, 105, 86, 106, 24]. Most of these techniques are lossless and thus
achieve high fidelity, however, they are inherently limited in their ability to significantly reduce
file sizes since they preserve all details of the mesh representation. To overcome the limitations of
lossless compression, lossy techniques have emerged as popular alternatives. Geometry simplification
methods aim to reduce the number of polygons in a mesh while retaining as much of the original
structure as possible [52, 28, 98, 99]. Extensions of these methods have incorporated surface intrinsic
properties, such as the mesh Laplacian, as a basis for simplification [52] or error metrics [28, 15] and
couple this with entropy coding [49]. Recently, there have also been approaches that couple these
with learned models [79].

Surface Upsampling. Traditional subdivision algorithms [130, 6, 64] refine coarse meshes by
splitting polygonal faces into finer elements, often paired with displacement mapping [37] to enhance
detail. However, these methods rely on hard-coded priors and fixed polynomial interpolations,
which can overly smooth the reconstructed geometry and fail to capture intricate details. Neural
approaches [34, 62] address these limitations by embedding geometric information into learnable
parameters.

2.2 Neural Graphic Primitives

Neural networks are increasingly being used to represent 2D images [95, 102, 27], 3D objects and
scenes [96, 43, 77, 102, 114, 18, 72, 68], surface representations [101, 104, 81, 22], occupancy
networks [69, 14], and signed distance fields [71, 76, 3]. These methods, out of the box, can
also be used to compress 3D models in some format since the learned neural network weights
are often already significantly smaller. Many NGP compression methods often employ standard
neural network techniques to compress MLP by knowledge distillation [92], pruning [40, 113, 45],
quantization [91, 128, 117, 29, 126], factorizong tensor grids [26, 75], low-rank approximation [92,
109, 103, 41], and using codebooks [55, 53, 54] for quantization. Another approach is to compress
feature grids or learnable embeddings [93, 11, 78] or by compressing extracted voxels [108, 9]
in contrast to compressing the MLP often. Another set of approaches combines many of these
orthogonal improvements to compressing NeRFs [57]. However, these methods often require training
networks per scene or object, incurring significant compression latencies.
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Figure 2: Overview of our Method. Squeeze3D bridges arbitrary latent spaces between 3D encoders
and generators through trainable mapping networks. During compression, a 3D geometry is encoded
and then transformed into a compact representation via the forward mapping network. During
decompression, the reverse mapping network converts this representation into the generator’s latent
space, which is then used to reconstruct the original geometry.

2.3 3D Autoencoders and Generators

Autoencoders encode inputs into a latent space and then back into the original input using an encoder-
decoder pair; thus, they could be used as compression algorithms. Early approaches relied on
volumetric representations, discretizing 3D shapes into voxel grids to leverage ConvNets for encoding
and decoding [63, 35, 59, 5, 73]. While these approaches are effective for regular grid structures,
these methods faced scalability challenges due to cubic memory growth with resolution increases.
Subsequent advancements focused on spectral methods for encoding 3D shapes in frequency domains,
offering compact latent representations but requiring precomputed basis functions that limited
generalizability across shape categories [118, 76].

Several works [127, 13, 111, 50] use a VAE [47] to compress 3D data into a compact latent which
could be used as a compressed representation. There also exist many approaches that train generators
to reconstruct radiance fields [48, 39, 112], Gaussians [110, 66, 112], or voxels [83, 112]. Some recent
works also pose the problem as learning in a token-space [8, 12, 94, 122, 124, 116, 65, 60, 38, 67, 16],
or with diffusion models [121, 2, 84, 25, 82, 89]. One such generative model [122] is able to compress
meshes with high compression ratios. Compared to these methods that use autoencoders or generative
models for compression, Squeeze3D does not require training specialized encoder-generators for
each representation. Instead, Squeeze3D aims to use existing encoders and generative models. This
enables flexibly adapting the approach as encoders and generative models evolve and supporting
different 3D formats.

The work closest to our method is Generative Latent Coding (GLC) [42], which trains an autoencoder-
style generative model to compress images, particularly compressing the latent representations for an
image obtained through VQ-VAE [107]. However, this method is not designed for 3D data.

3 Method

In this work, we introduce Squeeze3D, a technique to generate highly compressed representations
of 3D models by leveraging the implicit prior knowledge learnt by 3D generative models. We also
leverage the availability of many 3D encoders to support an extensible set of 3D formats.

The Squeeze3D architecture is depicted in Figure 2. The key ideas of Squeeze3D are as follows. (1)
We leverage existing 3D encoders to generate encoded representations for a given 3D format. Thus,
the Squeeze3D architecture can be extended to support different 3D formats by using new or existing
encoders. This approach also enables smaller mapping networks, as we now introduce. (2) We use
small neural networks to convert from this encoded representation to a highly compressed latent
representation (during compression) and then back into the latent space of a 3D generative model (for
decompression). We refer to these neural networks as the forward and reverse mapping networks,
and they effectively map between the latent space of a 3D encoder to that of a 3D generative model.
Thus Squeeze3D can leverage a new 3D generative model by retraining the mapping networks. (3)
We propose an additional loss term that enables robust training of the mapping networks to generate
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Table 1: Notation. The notation we use to describe our method.
Symb. Description Symb. Description

G A 3D geometry in some format E 3D encoder model: E(G) 7→ zE ∈ RdE

G 3D generator model: G(zG, c) 7→ G′ zE Latent code from the encoder: zE ∈ RdE

zG Latent code for the generator: zG ∈ RdG zcomp Compressed representation zcomp ∈ RdC

c Conditioning information (e.g. text prompt,
image) for G

FE
θ Forward mapping network: FE

θ (zE) 7→
zcomp

FD
θ Reverse mapping network: FD

θ (zcomp) 7→
zG

dC Dimensionality of compressed representa-
tion

dG Dimensionality of generator latent space dE Dimensionality of encoder latent space

a highly compact latent representation that can be used to store/transmit the 3D model. We share an
overview of the notation we use to describe our method in Table 1.

Mapping networks offers two major benefits over a encoder-generator pair such as MeshAnything [12]:
(1) The mapping networks typically provide significantly higher compression ratios than existing
VAE approaches; (2) Mapping networks provide more flexibility in choice of 3D format, for example,
InstantMesh or LRM require multi-view images as input rather than a mesh.

3.1 Bridging Latent Spaces

Squeeze3D comprises two pre-trained models: (1) a 3D encoder E that maps 3D representations to a
latent space, and (2) a 3D generator G that synthesizes 3D models of the same initial representation.
For a given 3D representation (mesh, point cloud, radiance field) G, the pre-trained encoder E
produces a latent representation

zE = E(G) ∈ RdE (1)

This latent zE encapsulates G, but is not in a highly-compressed format. Additionally, we cannot
directly use this representation with the generator G, as G operates in a different latent space. The
generator G synthesizes a 3D model G′ given a latent code zG and in some cases conditioning
information c, G′ = G(zG, c). To bridge these disparate latent spaces, we train two mapping
networks:

Forward Mapping network FE
θ : Maps from the encoder’s latent space to the compressed space,

zcomp = FE
θ (zE). Reverse Mapping networks FD

θ : Maps from the compressed space to the
generator’s latent space, zG = FD

θ (zcomp).

We train FE
θ , and FD

θ together and keep the encoder E and generator G networks frozen.

Compression. To compress any 3D model G, the model is first encoded using the pre-trained
encoder E and then mapped into a highly compressed latent zcomp using the forward mapping
network FE

θ

zcomp = FE
θ (E (G)) (2)

Decompression. To decompress the model from its highly compressed latent representation zcomp,
we use the reverse mapping network FD

θ to obtain the latent in the 3D generator space. The 3D
generator then reconstructs the original 3D model G (G′)

G′ = G
(
FD
θ (zG)

)
(3)

3.2 Training Squeeze3D

In order to train the Squeeze3D architecture, we need to train the mapping networks for any given pair
of pre-trained 3D encoders and pre-trained 3D generator models. To train these mapping networks, we
need training samples from the encoder’s latent space and the corresponding latents in the generator’s
latent space. These latents in the generator’s latent space serve as “ground truth” samples during the
training process. We summarize our training process in Figure 3. We now describe how to generate a
training dataset with samples from both of these latent spaces.
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Figure 3: Training Squeeze3D. We show an overview of (a) our process of creating synthetic data to
train the mapping networks and (b) our process of training the mapping networks.

Given a pre-trained 3D generator G and encoder E, we first sample a diverse collection of condi-
tioning inputs C = {ci}Ni=1 appropriate for the generator model (e.g. text prompts for text-to-3D
generators, images for image-to-3D generators, or random noise for unconditional generators). For
each conditioning input ci, we sample latent vectors zGi

from the generator G and then synthesize a
3D model using the generator: G′i = G(zGi

, ci). Then we encode this synthetic or generated 3D
model using the pre-trained encoder E, zEi = E(G′

i). This methodology gives us paired synthetic
data, i.e., latents, for any given pair of encoder and generator. {(zEi , zGi)}Ni=1, which provides the
necessary supervision for training our mapping networks.

The mapping networks FE
θ and FD

θ together with the generated dataset using the loss shown
in Equation (4).

L =

orthogonality of compressed representation︷ ︸︸ ︷
λgram∥FE

θ (zE)F
E
θ (zE)

⊤ − I∥2F
+ λgen∥FD

θ

(
FE
θ (zE)

)
− GT∥22︸ ︷︷ ︸

reconstruction loss

, (4)

where GT represents the synthetic ground-truth latents and ∥ · ∥F denotes the Frobenius norm.

The loss function includes an reconstruction loss term that allows us to minimize the difference
between the generated latents and the corresponding ground-truth latents. We also add another term,
which we refer to as gram loss. When training Squeeze3D with only the reconstruction loss term, we
found that they concentrate information along a small subset of dimensions, effectively rendering
many dimensions redundant.

To understand this, we empirically analyzed the latent vectors zcomp = FE
θ (zE) ∈ RdC produced

by our forward mapping network. For any batch of size B, of encoded 3D models {zEi
}Bi=1, we

can compute the matrix Z ∈ RB×dC where each row is FE
θ (zEi

). First, we observe that if we do
a singular value decomposition Z = UΣV⊤, the singular values in Σ = diag(σ1, σ2, . . . , σdC

)
exhibits an extremely skewed distribution: σ1 ≫ σ2 ≫ ... ≫ σdC

where σi represents the i-th
singular value of Z, arranged in descending order. The condition number κ = σ1

σdC
is typically very

large, indicating that the effective rank of Z is much lower than dC .

Second, we observe that the correlation matrix C = 1
BZ⊤Z ∈ RdC×dC has many off-diagonal

elements with large magnitudes in comparison with diagonal elements. This indicates that the
dimensions of the compressed representation encode redundant information. Particularly,

deff =
(
∑dC

i=1 λi)
2∑dC

i=1 λ
2
i

≪ dC , (5)

where λi are the eigenvalues. These observations indicate that most of the information in the
compressed representation was concentrated along a few dominant directions, with most dimensions
contributing negligibly. For compression, this represents a severe inefficiency in utilizing the available
parameter budget.
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Figure 4: Qualitative mesh compression results. We compare Squeeze3D to state-of-the-art
methods. Our approach maintains visually important geometric details. Additional results in§ C.

To address this, we propose the Gram loss term that is computed on the outputs of the first mapping
network FE

θ to force the outputs of FE
θ to be orthonormal. A semi-orthogonal matrix A ∈ Rm×n

is defined as a matrix that satisfies either AA⊤ = Im (if m ≤ n) or A⊤A = In (if n ≤ m). Our
gram loss term when minimized forces FE

θ (zE)F
E
θ (zE)

⊤ ≈ I, which is precisely the condition for
FE
θ (zE) to be a semi-orthogonal matrix (when dC ≤ dE).

4 Experiments

4.1 Experimental Setup

We train Squeeze3D to compress three 3D formats: textured 3D meshes, point clouds, and radiance
fields i.e. grids of (rgbσ). For 3D meshes, we train our approach with MeshAnything [12] as the
encoder and train mapping networks for three 3D generators: Shap-E [44], OpenLRM [36, 32],
and InstantMesh [115]. For point clouds, we train mapping networks for PointNet++ [80] as the
encoder and LION [119] as the decoder. For radiance fields, we train mapping networks for NeRF-
MAE [39] as the encoder and the generator. We compress radiance fields for evaluation to use
existing generation models such as [39] that only generate radiance fields in this format. We present
additional implementation details in Section 4.1. We also perform experiments on a separately-
sourced collection of meshes and radiance fields to evaluate the effectiveness of Squeeze3D for
out-of-distribution data in Appendix C and ablations in Appendix C.

Ground TruthSqueeze3D

Lorem ipsum

Draco†

Lorem ipsum

Figure 5: Qualitative point cloud compression
results. We show qualitative results comparing
Squeeze3D to state-of-the-art methods. Our ap-
proach achieves significantly higher compression
ratios while maintaining perceptually important
geometric details.

Training Dataset Creation. We use the method
described in Section 3.2 to train Squeeze3D for
each of our evaluated encoder-generator pair. We
now list the datasets that were used to create these
latent training datasets.

Shap-E [44] as the generator. We build a list of
2500 prompts using LLaMA3, each of which is
used four times to build a dataset of 10,000 objects
(details in the supplementary).

LRM [36, 32] or InstantMesh [115] as the gen-
erator. We rendered 10,000 random objects from
Objaverse [20] which serve as image conditions.
We also make sure that our rendering follows any
conventions the 3D generator expects the input
images to follow, for instance, white backgrounds
or no backgrounds.

LION [119] as the generator. We were able to generate plausible point clouds of 3D objects without
any conditioning data from random noise.

NeRF-MAE [39] as the generator. We generate radiance fields from the NeRF-MAE [39] dataset.
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Figure 6: Qualitative radiance field compression results. We show qualitative results comparing
Squeeze3D to state-of-the-art methods. Our approach achieves a significantly higher compression
ratio while maintaining visually important geometric details.

While many other compression methods require the 3D objects to have certain properties like
watertightness, we do not impose any such constraints. We split the datasets into training (80%), and
validation (10%) sets generated from our approach. We also built a test (10%) set of objects from the
datasets: Objaverse, ShapeNet, and NeRF-MAE, on which we report our metrics.

Evaluation metrics. We report the standard widely-used metrics, PSNR ↑, MS-SSIM ↑, and LPIPS
↓ [125] for reconstruction quality of meshes and radiance fields. We report standard metrics, PCQM
↑ [70], and PointSSIM ↑ [1] for reconstruction quality of point clouds. For all the baselines we
compare against, we report average compression ratios, as well as compression and decompression
times.

4.2 3D Mesh Compression

We compare Squeeze3D applied to mesh compression with existing approaches in Table 2.
While [120] achieves very high compression ratios on 3D meshes, we are unable to compare
Squeeze3D with it due to the absence of code and models, and thus qualitatively contrast in Sec-
tion 2.3. We make the following observations.

First, Squeeze3D achieves a mean compression ratio of 2187× (6.43MB→ 3 kB), compared to
state-of-the-art compression methods: DeepSDF [76], by more than an order of magnitude (131×,
6.43MB→ 49 kB). Despite this extreme compactness, Squeeze3D preserves perceptual quality,
achieving an LPIPS of 0.0274 versus 0.3704 for DeepSDF which completely fails to reconstruct
complex large meshes.

Second, Squeeze3D achieves similar reconstruction quality (LPIPS of 0.0274) as that of approaches
such as Draco∗ (LPIPS of 0.1039), Draco† (LPIPS of 0.0397), and Corto [49] (LPIPS of 0.1374).
Squeeze3D also achieves better quality than Neural Subdivision [62] and DeepSDF [76]. Though
compared to the state-of-the-art non-learned mesh compression, Squeeze3D cannot achieve as high
reconstruction quality, we note that Squeeze3D achieves a significantly higher compression ratio than
these approaches. Neural Geometry Fields [22] performs better in terms of quality and compression
ratios than non-learned methods but does significantly worse in terms of compression size when
compared with our approach. We conclude that in achieving very high compression rates, Squeeze3D
offers the highest reconstruction quality. Thus, we demonstrate that leveraging 3D generative models
is a promising approach for 3D compression.

While using Squeeze3D may not be as fast as some non-learned approaches like Draco [24] or
Corto [49], Squeeze3D is often faster than other learned methods. Squeeze3D is particularly much
faster than training a network per object, like in NGF [22]. NGF takes on average 152638 ms to
compress objects and 507 ms to decompress objects, compared to 270 ms to compress an object and
1476 ms to decompress objects for Squeeze3D. We qualitatively compare against Draco, Corto, and
NGF for compressing meshes in Figure 4. We note that the results from our approach retain high
visual quality due to the use of priors from a generative model.

4.3 3D Point Cloud Compression

We compare our method applied to 3D point cloud compression with previous approaches in Table 3.
We notice that our approach achieves a significantly higher compression ratio of 117 (117 / 1.00) opposed
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Table 2: Mesh Compression Results. Quantitative comparison of Squeeze3D with state-of-the-art
3D mesh compression methods. We report compression ratio (CR), compression and decompression
times, and quality metrics (PSNR, MS-SSIM, and LPIPS). (±) represents standard deviations.

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
Draco∗ [24] + JPEG 6.9215 (6.43 / 0.93) 70.30 29.97 15.45 (±1.27) 0.7468 (±0.09) 0.2437 (±0.09)

Draco† [24] + JPEG 6.7001 (6.43 / 0.96) 69.05 28.33 23.33 (±1.32) 0.9576 (±0.03) 0.1039 (±0.06)

Draco‡ [24] + JPEG 6.6087 (6.43 / 0.97) 68.15 27.46 38.91 (±1.30) 0.9992 (±0.00) 0.0045 (±0.00)

Draco§ [24] + JPEG 6.1968 (6.43 / 1.04) 66.30 25.81 48.55 (±1.54) 1.0000 (±0.00) 0.0004 (±0.00)
Corto [49] + JPEG 45.93 (6.43 / 0.14) 50.52 8.20 20.92 (± 2.79) 0.8619 (± 0.08) 0.1374 (± 0.08)
Neural Subd. [62] + JPEG 11.28 (6.43 / 0.57) 61104.12 0.00 15.95 (±2.18) 0.8525 (±0.04) 0.1513 (±0.05)
DeepSDF [76] + JPEG 131.22 (6.43 / 0.05) 887.78 578.53 8.47 (± 0.23) 0.7039 (± 0.07) 0.3704 (± 0.08)
NGF [22] + JPEG 42.87 (6.43 / 0.15) 152637.87 507.21 35.45 (± 3.02) 0.9987 (± 0.08) 0.0054 (± 0.03)

Squeeze3D (InstantMesh) 2187.0748 (6.43 / 0.003) 270.24 1476.00 27.50 (±3.13) 0.9796 (±0.02) 0.0274 (±0.02)

Table 3: Point Cloud Compression. Quantitative comparision of Squeeze3D with state-of-the-art
point cloud compression methods. We report compression ratio (CR), compression and decompression
times, and quality metrics (PCQM and PointSSIM). (±) represents standard deviations.

Method CR (×) (KB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PCQM ↑ PointSSIM ↑
Draco‡ [24] 15.6417 (117 / 7.48) 0.35 0.34 3.2875 (± 0.13) 0.9722 (± 0.11)

Draco§ [24] 22.4138 (117 / 5.22) 0.25 0.23 2.1039 (± 0.08) 0.9535 (± 0.12)

Squeeze3D (LION) 58.5000 (117 / 2.00) 3.85 12.74 1.8437 (±1.13) 0.4484 (±0.11)

Table 4: Radiance Field Results. Quantitative comparison of Squeeze3D with state-of-the-art
3D radiance field compression methods. We report compression ratio (CR), compression and
decompression times, and quality metrics (PSNR, MS-SSIM, and LPIPS). (±) represents standard
deviations.

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
SparsePCGC [108] 78.9218 (58.07 / 0.74) 301.39 680.82 22.2588 ± 0.92 0.8947 ± 0.02 0.1400 ± 0.02
VQRF [54] 40.2493 (58.07 / 1.45) 120.14 20.58 29.5537 ± 0.01 0.9749 ± 0.00 0.0618 ± 0.00

Squeeze3D (NeRF-MAE) 619.4133 (58.07 / 0.09) 45.63 75.80 26.62 ± 2.57 0.9533 ± 0.04 0.0743 ± 0.02

to 22.41 (117 / 5.22) by previous approaches. Our approach, while achieving significantly higher
compression ratios, leads to only a 0.6898 lower PCQM. We show qualitative results in Figure 5.

4.4 Radiance Field Compression

We compare Squeeze3D applied to radiance field compression with SparsePCGC [108] and
VQRF [54] in Table 4. We choose these approaches to compare against since these works (or
a setting of these works), akin to our setup, only require (rgbσ) grids. We notice that our approach
achieves a significantly higher compression ratio of 619× opposed to 40× by previous approaches.
Squeeze3D achieves these significantly higher compression rates with only a 0.0125 drop in LPIPS.
We show qualitative results in Figure 6.

5 Discussion and Limitations

The most significant limitation of our approach is its inherent dependency on the quality and ex-
pressiveness of the underlying 3D generative model. The decompressed outputs from Squeeze3D
fundamentally cannot exceed the quality of what the generator can produce, as the generator serves as
both a prior knowledge base and a quality ceiling. In our evaluation, we observed that reconstruction
fidelity is directly correlated with the generative capabilities of the chosen generator model. For
instance, when using the Shap-E [44] generator, we found it challenging to faithfully reproduce highly
complex objects due to limitations in the model’s semantic capacity (Appendix C). This limitation,
however, positions Squeeze3D to benefit automatically from future advancements in 3D generative
modeling.

Since Squeeze3D is designed as a compression-decompression framework that should not require
per-scene retraining, the generalization capability of our mapping networks to unseen 3D models
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is crucial. We evaluated this aspect by testing on a dataset of 158 3D meshes and 227 radiance
fields, which served as out-of-distribution samples, and found that our approach maintains consistent
performance in Appendix A. Nevertheless, for certain outlier cases where the input 3D model contains
features far from the distribution seen during training, compression quality may degrade. Thus, for
Squeeze3D to be effectively deployed in practical applications, a fallback mechanism would be
beneficial to handle such outlier cases. This could involve either a hybrid approach that combines our
method with traditional compression techniques or an adaptive system that detects when the mapping
networks are likely to produce low-quality results and switches to alternative compression methods.

6 Conclusion

In this work, we introduce Squeeze3D, a novel framework for 3D compression that leverages the rich
priors contained within existing 3D generation models. Our approach bridges arbitrary latent spaces
between different models, enabling unprecedented compression ratios while maintaining high visual
fidelity. The key benefit of our approach lies in its ability to use the semantic information already
encoded in pre-trained 3D generation models, effectively serving as a neural compressor. By training
networks that map between latent spaces, we eliminate the need for per-scene optimization that
plagues many neural compression methods. This results in faster compression and decompression
times compared to many other learned approaches while maintaining competitive visual quality
metrics. We hope this work inspires more research on using generative models for compressing 3D
data.
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A Additional Implementation Details

We share additional implementation details to reproduce Squeeze3D.

A.1 Network Design

Feature
Input

Feature
Output

Flatten

LayerNorm
Linear

GELU
Dropout

x2

Linear

M
esh M

apping N
etw

orks

Feature
Input

Flatten

Linear

Point C
loud M

apping N
etw

orks

LayerNorm
GELU

Dropout

Linear

GELU
Dropout

x12

Linear

Feature

Feature
Input

Flatten

Linear

R
adiance Field M

apping N
etw

orks

Conv3D
LayerNorm3D

GELU

ResidualBlock3D
Dropout3D

Conv3D
LayerNorm3D

GELU
x2

x4

ResidualBlock3D
Dropout3D
ConvT3D

LayerNorm3D
GELU

x2

ResidualBlock3D
ResidualBlock3D

Feature
Output

(a) (b) (c)
Output

Figure 7: Network Architectures.

For each of the encoder-decoder pairs, we train
the mapping networks, which are feed-forward
neural networks. We summarize network archi-
tectures in Figure 7.

Meshes. The mapping networks together first
flatten the input and apply a linear layer to
project it into a hidden dimension. This is fol-
lowed by LayerNorm [4], a GELU nonlinear-
ity [33], and dropout [97]. A second linear
layer then produces another hidden represen-
tation, which is added residually to the output of
the first linear layer and passed through a second
LayerNorm. After another GELU and dropout,
a final linear transformation projects into the
latent space.

Point Clouds. The mapping networks to-
gether consist of flattening the input, a lin-
ear projection feeds into a LayerNorm [4];
this normalised vector is stored as a global
residual. The sequence then passes through
GELU-activated [33] hidden layers of uniform
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width, each followed by dropout regularisa-
tion on the activations [97]. We use two
skip-connection schemes: (i) the global residual is re-added immediately after the first hidden
layer, and (ii) every fourth hidden layer receives a local residual that adds its own input to its output,
creating short four-layer paths. A final linear projection transforms the resulting representation into
the target latent space.

Radiance Fields. The mapping networks together consist of a custom LayerNorm that first permutes
tensors so that LayerNorm [4] can operate across channels before restoring the usual NCDHW layout.
We then build ResidualBlocks, which mirrors a bottleneck ResNet-V2 design [31]: a 3 × 3 × 3
conv–LN–GELU [33] stem, a 1 × 1 × 1 → 3 × 3 × 3 bottleneck branch that doubles the channel
count, and two skip paths: (i) projection shortcut for stride/width mismatches and (ii) “within-block”
residual that re-adds the pre-bottleneck activation just before the final GELU. The encoder begins
with a 96-channel input, expands to 192 channels, and applies two strided ResidualBlock units to
down-sample from 403 latents to 203 and then 103. Thus we have a narrow bottleneck of 24 channels
that serves as the latent code. The symmetric decoder inverts this pathway with a 3×3×3 convolution,
residual processing, and two transposed-conv up-sampling stages that restore the original resolution,
all regularised by spatial Dropout in 3D. U-Net–style [85] skip connections add encoder feature maps
to decoder activations whenever spatial dimensions match.

A.2 Training

Table 5: Model Sizes. We show the combined size
of the forward mapping network and the reverse map-
ping network we train for each setting. We denote the
compressed size in parentheses (·) for the point cloud
methods.

Encoder-Decoder Pair zcomp Parameters (M)

MeshAnything [12]-InstantMesh [115] 770 96.12
MeshAnything [12]-Open LRM [36, 32] 1024 87.51
MeshAnything [12]-Shap-E [44] 1024 134.53

PointNet++ [80]-LION [119] 1024 2.11
PointNet++ [80]-LION [119] 2048 6.53
PointNet++ [80]-LION [119] 4096 22.29
PointNet++ [80]-LION [119] 8192 81.48

NeRF-MAE [39] 24000 86.46

Our results are collected on an Intel(R)
Core(TM) i7-13700K CPU machine with
one NVIDIA RTX4090 GPU and 128GB
memory. We list the choices we make
during training for each encoder-generator
pair.

For all the models we train with Me-
shAnything [12] as the encoder, we use
the 350 million parameter version of Me-
shAnything and use the features created
by MeshAnything as the encoded inputs.
These encoded inputs (257, 1024) are
relatively larger compared to our desired
compression size.

MeshAnything [12]-InstantMesh [115]. While generating the dataset, we ensure that the input
condition images are in the RGBA format and have no background. We experiment to have the
mapping networks generate: multiview ViT embeddings [21] that InstantMesh uses as well as the
triplane representation InstantMesh uses. We experimentally observed better performance with
generating triplane representations, thus our results report this setting.

MeshAnything [12]-Open LRM [36, 32]. While generating the dataset, we ensure that the
input condition images are in the RGBA format and have no background. Due to the lack of
public code for the LRM, we use the OpenLRM implementation. We experiment with both
the openlrm-mix-base-1.1 and openlrm-obj-base-1.1, and we experimentally observed the
openlrm-obj-base-1.1 to have better performance. We train the mapping networks to generate
the triplane latents for LRM.

MeshAnything [12]-Shap-E [44]. We experiment with Shap-E in the text-to-image mode. The
mapping networks generate the implicit MLP representations.

PointNet++ [80]-LION [119]. We experiment with the SSG and MSG versions of PointNet++ and
experimentally observed SSG without normals to work the best. We use the PointNet++ checkpoints
pre-trained for classification. We consider the outputs from the point set feature learning module as
the encoded representations. We use the all categories model for LION. The mapping networks are
trained to generate both the global and local latents for LION.
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Table 6: Training Hyperparameters. We show the training hyperparameters for the mapping
networks we train.

Hyperparameter LRM Shap-E InstantMesh NeRF-MAE

Training Precision FP-32 FP-32 FP-32 FP-32
Compressed Size 1024 1024 770 24000
Dropout 0.35 0.35 0.35 0.2
Epochs 700 700 700 2000
Batch Size 16 8 16 4
Optimizer Muon Adam Muon Muon

Optimizer Parameters
λ = 10−2

NS = 6 β1 = 0.9 NS = 6 NS = 6
β = 0.95 β2 = 0.999 β = 0.95 β = 0.95

Initial Learning Rate 10−2 10−4 10−3 10−2

Final Learning Rate 10−7 10−4 10−7 10−5

Scheduler Linear Decay Constant Linear Decay Linear Decay
Epochs Decay 700 N/A 600 1000
Gradient Accum. Steps 1 2 1 1
Gradient Clipping None None None None

Hyperparameter LION (1024) LION (2048) LION (4096) LION (8192)

Training Precision FP-32 FP-32 FP-32 FP-32
Hidden Size 1024 2048 4096 8192
Dropout 0.3 0.3 0.3 0.3
Epochs 4000 4000 1000 400
Batch Size 16 16 16 16
Optimizer Muon Muon Muon Muon

Optimizer Parameters β = 0.95 β = 0.95 β = 0.95 β = 0.95
NS = 6 NS = 6 NS = 6 NS = 6

Initial Learning Rate 10−3 10−3 10−3 10−3

Final Learning Rate 10−7 10−7 10−7 10−7

Scheduler Linear Decay Linear Decay Linear Decay Linear Decay
Epochs Decay 1000 1000 1000 1000
Gradient Accum. Steps 1 1 1 1
Gradient Clipping None None None None

We provide the model sizes in Table 5. We provide the hyperparameters we use to train the mapping
networks in Table 6.

B Evaluation Details

B.1 Baselines

Meshes. We compare Squeeze3D against non-learned baselines: Draco [24] (with multiple settings)
and Corto [49], the best performing mesh compression techniques. For all settings of Draco, we use a
compression level of 10. The setting § represents 14 bits for the position attribute, 14 bits for texture
coordinates, 14 bits for normal vector attributes, and 14 bits for any generic attribute. The setting ‡

represents 11 bits for the position attribute, 10 bits for texture coordinates, 8 bits for normal vector
attributes, and 8 bits for any generic attribute. The setting † represents 7 bits for the position attribute,
7 bits for texture coordinates, 7 bits for normal vector attributes, and 7 bits for any generic attribute.
The setting ∗ represents 4 bits for the position attribute, 4 bits for texture coordinates, 4 bits for
normal vector attributes, and 4 bits for any generic attribute. We also compare our approach against
learned approaches: Neural Subdivision [62], DeepSDF [76], and Neural Geometry Fields [22]. All
the baseline models we compare against do not support texture images, thus we pair these methods
with JPEG to compress the accompanying texture images.
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Table 7: Mesh Compression Results. Quantitative comparison of Squeeze3D for compressing
meshes from our collection of meshes (Appendix B.2).

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
Ours 1933.33 (5.80 / 0.003) 270.24 1476.00 26.6353 0.9905 0.0124

Point Clouds. We compare Squeeze3D against Draco [24], the best performing point cloud com-
pression technique. For all settings of Draco, we use a compression level of 10. The setting §

represents 14 bits for the position attribute, 14 bits for texture coordinates, 14 bits for normal vector
attributes, and 14 bits for any generic attribute. The setting ‡ represents 11 bits for the position
attribute, 10 bits for texture coordinates, 8 bits for normal vector attributes, and 8 bits for any generic
attribute.

Radiance Fields. We compare Squeeze3D against SparsePCGC [108], and VQRF [54], the best
performing applicable techniques to radiance field compression. Particularly, note that our method
compresses arbitrary radiance fields and thus most existing NeRF and 3D Gaussian Splat compression
echniques are not applicable to our problem. To evaluate VQRF [54], we use the voxel pruning and
vector quantization steps which are relevant for compressing radiance field grids.

B.2 Collection of Additional Meshes for Evaluation

Since Squeeze3D is designed as a compression-decompression framework that should not require
per-scene retraining, the generalization capability of our mapping networks to unseen 3D models is
very important. Thus, we also collected a dataset of 158 high-quality 3D meshes from the following
sources,

• OpenLRM Demo: https://huggingface.co/spaces/zxhezexin/OpenLRM

• InstantMesh Demo: https://huggingface.co/spaces/TencentARC/InstantMesh

• Hunyuan3D-2 Demo: https://huggingface.co/spaces/tencent/Hunyuan3D-2

• TRELLIS Demo: https://huggingface.co/spaces/JeffreyXiang/TRELLIS

• SPAR3D Demo: https://huggingface.co/spaces/stabilityai/
stable-point-aware-3d

• SORA-3D Demo: https://huggingface.co/spaces/ginipick/SORA-3D

B.3 Collection of Additional Radiance Fields for Evaluation

Since Squeeze3D is designed as a compression-decompression framework that should not require
per-scene retraining, the generalization capability of our mapping networks to unseen 3D models is
very important. Thus, we also report results on the unseen “ai” subset of the NeRF-MAE dataset [39].

C Additional Results

C.1 Results on our Mesh Collection

To demonstrate that our approach can compress meshes which are not in the same distribution that
our training dataset was derived from: Objaverse [20], we report the results of our method with
MeshAnything [12] as the encoder and InstantMesh [115] as the generator in Table 7. Our mapping
networks are trained on the dataset we derived from Objaverse [20], but we test Squeeze3D on our
collection of meshes. On our collection of meshes, Squeeze3D achieves on average only a 0.86 dB
reduction in the PSNR and a 0.015 reduction in LPIPS.

C.2 Results on our Radiance Field Collection

Our mapping networks are trained on the dataset we derived from NeRF-MAE [39], but we test
Squeeze3D on only the radiance fields in the ai subset of the dataset which was collected by seprately
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Table 8: Radiance Field Results. Quantitative comparison of Squeeze3D for compressing radiance
fields from the ai subset of the NeRF-MAE dataset (Appendix B.3).

Method CR (×) (MB) ↑ Compress (ms) ↓ Decompress (ms) ↓ PSNR ↑ MS-SSIM ↑ LPIPS ↓
Ours 657.8888 (59.21 / 0.09) 45.63 75.80 22.40 0.8958 0.1400

Linear Interpolation

Figure 8: Interpolation. The compressed representations we obtain can also be interpolated. In these
examples we obtain the compressed representation for the leftmost and rightmost meshes and linearly
interpolate between them.

Ground Truth Reconstruction

Figure 9: Multi-view visualization of compressed and reconstructed meshes. The consistent ap-
pearance across different viewing angles demonstrates that Squeeze3D learns correct transformations
between latent spaces and produces coherent 3D reconstructions. This confirms that our compressed
representation encodes complete 3D information rather than view-dependent features.

than other datsets. On our collection of meshes, Squeeze3D achieves on average only a 4.22 dB
reduction in the PSNR as we show in Table 8.

C.3 Qualitative Results on Meshes.

We also notice that our approach works well with high-resolution complex meshes as we show
in Figure 12. In Figure 9, we show a mesh we reconstruct with our method through multiple camera
angles to demonstrate that our approach learns a correct transformation between the latent spaces and
the reconstruction is consistent. We also observe that the compression representation our method
learns can also be interpolated as we show in Figure 8. In Figure 11 we show examples using two
different generative models indicating that Squeeze3D can be extended to use other generative models
for compression. In Figure 10, we observe that our method learns to effectively represent intricate
geometrical details.

C.4 Ablations

We conduct several ablation studies to better understand the behavior of Squeeze3D and analyze the
trade-offs between compression ratio, reconstruction quality, and computational efficiency. First,
we investigate how varying the size of our compressed representation affects decompression time.
In Table 9, we show that the compressed size affects the compression and decompression times
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ReconstructedGround Truth

Figure 10: Squeeze3D preserves geometry details. We show some meshes compressed with
Squeeze3D as wireframes. Notice that Squeeze3D preserves many finegrained geometric details.

Table 9: Ablations. Ablation study on compressed representation size. We analyze how varying the
dimensionality of the compressed latent space affects compression time, decompression time, and
reconstruction quality (measured by PCQM and PointSSIM).

Size (zcomp) Compression (s) Decompression (s) PCQM ↑ PointSSIM ↑
1024 3.44 12.33 1.4047 0.3640
2048 3.51 12.39 1.3311 0.4249
4096 3.85 12.74 1.8437 0.4318
8192 5.3 14.19 1.5665 0.4473

proportionally since changes in the compressed size affect the size of the neural network. Next, we
examine how different compression sizes affect reconstruction quality. Table 9 shows a correlation
between latent dimension and reconstruction quality. We observe substantial improvements in
PointSSIM when increasing the compressed size from 1024 to 2048, however, this improvement in
quality starts diminishing beyond the compressed size of 2048.

D Societal Impact

Our method has the potential to advance social good by lowering the bandwidth, storage, and energy
requirements associated with the ever-growing volumes of 3D data. By shrinking large meshes, point
clouds, and radiance fields to kilobytes, Squeeze3D can make high-fidelity 3D assets practical for
mobile devices, distance learning, cultural-heritage archiving, and tele-presence, thereby broadening
access to immersive content while also reducing the carbon footprint of cloud infrastructure. How-
ever, extreme compression built on powerful generative priors also carries risks: it may facilitate
unauthorized replication and distribution of copyrighted 3D models; compressed latents could be
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OpenLRM

Shap-E

Ground Truth Reconstructed

Figure 11: Compression results using different 3D genera-
tors. Squeeze3D is agnostic to the choice of a 3D generation
model. Thus, we show compression results with the 3D gener-
ators: OpenLRM, and Shap-E. We choose 3D meshes that lie
in the representation capacity of the chosen 3D generators.

Reconstructed (comp. 0.003 MB)
            V: 72595, F: 11516

Ground Truth (8.2 MB)
  V: 77851, F: 120812

Figure 12: Compressing Complex
Meshes. Squeeze3D can be used to
compress highly complex textured
3D meshes (in this case 77851 ver-
tices and 120812 faces).

used to conceal contraband or embed hidden payloads; and the ease of disseminating photorealistic
3D scenes may accelerate the creation of deceptive “deep-fake” environments.

E Results Library

We present additional results in Figures 13 to 25.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 13: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 14: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 15: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 16: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 17: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 18: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 19: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 20: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 21: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 22: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 23: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 24: Results Library.
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Squeeze3D Ground Truth Squeeze3D Ground Truth Squeeze3D Ground Truth

Figure 25: Results Library.
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