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Figure 1. Given a RAW image, DiffuseRAW can perform the entire image-processing pipeline for low-light enhancement.
We show the camera output visualized in the sRGB space, the scaled-up RAW images, the output of a traditional pipeline,
and compare them with our approach trained on the RAW data. These images are taken with Sony α7SII and for these
input images, we have that the illuminance at the camera is < 0.1 lux, and we show the ratio of exposure times between
reference ground-truth and input images (×250, ×300). (Best viewed in color and with zoom.)

Abstract

Imaging under extremely low-light conditions
presents a significant challenge and is an ill-posed
problem due to the low signal-to-noise ratio (SNR)
caused by minimal photon capture. Previously, dif-
fusion models have been used for multiple kinds of
generative tasks and image-to-image tasks, however,
these models work as a post-processing step. These
diffusion models are trained on processed images and

learn on processed images. However, such approaches
are often not well-suited for extremely low-light tasks.
Unlike the task of low-light image enhancement or
image-to-image enhancement, we tackle the task of
learning the entire image-processing pipeline, from
the RAW image to a processed image. For this task,
a traditional image processing pipeline often consists
of multiple specialized parts that are overly reliant on
the downstream tasks. Unlike these, we develop a new
generative ISP that relies on fine-tuning latent diffu-



sion models on RAW images and generating processed
long-exposure images which allows for the apt use of
the priors from large text-to-image generation models.
We evaluate our approach on popular end-to-end
low-light datasets for which we see promising results
and set a new SoTA on the See-in-Dark (SID) dataset.
Furthermore, with this work, we hope to pave the
way for more generative and diffusion-based image
processing and other problems on RAW data.

1. Introduction
All imaging systems need to capture light to form

an image. When very little light is present in the scene,
imaging systems can only capture a few photons from
the scene; when few photons are collected from the
scene, the captured image is corrupted by noise sources.
The main challenge in these low-light scenes is that
the signal measured by the sensor is low relative to the
noise inherent in the measurement process.

While low-light imaging is a longstanding challenge,
traditional methods still struggle to restore images cor-
rupted by noise. For instance, amplifying the measured
analog or digital signals can result in the noise being
amplified, and significantly degrades the quality of the
image. Applying post-processing techniques such as
scaling or histogram stretching may improve the im-
age quality to some extent, but they cannot resolve
the issue of low signal-to-noise ratio (SNR) due to the
low photon counts in the captured image. Physical
imaging techniques to increase SNR, such as opening
the aperture or using flash, also have their own draw-
backs, including motion blur and camera shake that
make downstream applications with such images very
challenging, and in many cases not feasible. We can
also use burst-imaging techniques [24], however, these
often fail in very low-light scenarios since these meth-
ods are reliant on robust alignment techniques to ac-
count for motion in the scene which is immensely chal-
lenging in the extreme noise setting in which we are
interested in.

Alternatively, denoising algorithms can be applied
to noisy images to improve image quality. These
range from conventional techniques such as spatial
filters like [30, 65, 76] to other modern approaches
like BM3D [13], Deep Learning approaches based on
CNNs [8,22,43,46,79,80], and generative models based
on: GANs [31, 86], normalizing flows [68], and very
recently on denoising diffusion [48, 50, 52]. Although
these methods have been very successful in enhancing
low-light images, these approaches do not target very
low-light scenarios that we tackle or some of these ap-
proaches only tackle image enhancement as opposed

to the entire image processing pipeline like this work.
Though there have been approaches that tackle very
low-light scenarios (< 0.1 lux) like [83], however, they
use a simple CNN to solve this problem and we show
how we propose a new generative image processing
pipeline. Applying our approach to captured RAW
data outperforms other techniques that operate on pre-
processed Low Dynamic Range (LDR) camera inputs,
and is able to correctly generate minute details of the
image as well demonstrated by Figure 1.

Our approach specifically solves this problem by
proposing a new image-processing pipeline based on a
diffusion model. We first use a standard pre-trained
latent diffusion model and fine-tune this model on
patches of up-sampled and corrected Bayer RAW im-
ages. The fine-tuned model then learns the entire im-
age processing pipeline for low-light RAW data includ-
ing but not limited to demosaicing, color correction, en-
hancement, and transformations. The fine-tuning pro-
cess itself is supervised by long-exposure ground-truth
images and the model is fine-tuned to produce the same
resolution enhanced images. This greatly improves the
overall image-processing pipeline for low-light RAW
data and reduces the use of handcrafted processes in
the image-processing pipeline, over other traditional
and learned image-processing pipelines. Furthermore,
this approach also easily allows combining our learned
model with other forms of popular text condition-
ing like Dreambooth [61] and Instruct fine-tuning [6]
among others and can potentially be extended to sup-
port other high-level image editing operations like styl-
ization, inpainting, accessorization, and property mod-
ification. This allows our approach also enables a
new type of end-to-end generative camera Image Sig-
nal Processor (ISP) wherein regions of an image can
be inpainted or stylized using models that are applied
end-to-end, starting from the RAW data.

Our approach not only demonstrates improvements
throughout the image processing pipeline for low-light
RAW data but also is the first approach using a
diffusion-based model for working with RAW images
and makes apt use of the vast information a RAW
image has for the downstream task, here enhancing
and denoising very low-light images. With this pa-
per, we hope to pave the way for more diffusion-based
approaches for a generative end-to-end camera process-
ing pipeline leading to significant performance improve-
ments.

Contributions. A traditional image processing
pipeline often consists of multiple specialized parts
that are overly reliant on the downstream tasks. The
key novelty of our approach stems from modifying the



pipeline with a generalizable data-driven approach.

• We propose a first-of-its-kind generative cam-
era ISP for extreme low-light image enhancement
based on a diffusion model that improves perfor-
mance on low-light image enhancement in most
cases and is the first diffusion-based model that is
modeled over RAW image.

• We develop an implementation of this technique
using a latent diffusion model fine-tuned on low-
light RAW images allowing for great extensibility
and making use of the vast amount of priors that
diffusion models have.

• We set a new state-of-the-art for image denoising
on the popular See-in-the-Dark (SID) dataset [8]
demonstrating that a fine-tuned diffusion model
can enhance extremely low-light RAW images and
perform the whole image processing pipeline on
such data.

2. Related Work
Improving low-light images is a problem that has

been very well explored throughout the years, and
many deep-learning-based methods have recently per-
formed very well in improving low-light images which
has led to it being practical now. Images taken in low
light have a low signal-to-noise ratio in the captured
sensor data and thus are very noisy, to improve such
low-light images, these images need to be denoised.
We provide a brief overview of image-denoising algo-
rithms. Our approach also makes use of latent diffu-
sion models and we also provide a brief overview of
diffusion models. A popular class of algorithms for im-
proving low-light images are ones that mainly handle
processed images or image enhancement algorithms as
well as algorithms that handle the end-to-end image
processing pipelines for this problem. We also provide
a brief overview of both of these classes of algorithms.

2.1. Image Denoising

Image denoising is a very well-explored topic in vi-
sion and there have been many approaches proposed for
denoising images. Many traditional image-denoising
approaches draw inspiration from various mathemat-
ical and machine learning techniques, utilizing im-
age priors, statistical insights, and the power of deep
learning architectures. Within classical image denois-
ing techniques, methods such as Total Variation (TV)
denoising [60], wavelet-domain processing [55], sparse
coding [16], nuclear norm minimization [20], and 3D
Transform-Domain Filtering (BM3D) [14] perform well
across a range of noise levels and exploit specific priors

such as sparsity intensity changes, and transformation
domain.

The advent of deep learning approaches has signifi-
cantly reshaped this landscape. There have been mul-
tiple convolution-based denoising approaches [42, 77].
These approaches learn convolutional networks to ap-
proximate the noise maps and are often based on
strong priors. Furthermore, there have also been
other specialized approaches for denoising like Stacked
Sparse Denoising Auto-Encoders (SSDA) [70], Train-
able Nonlinear Reaction-Diffusion (TNRD) [9], and
Deep Autoencoders [44] demonstrating performance in-
creases over traditional methods in capturing intricate
noise patterns and restoring images. [48] proposed us-
ing physics-inspired GANs with stochastic corruptions
during training, to enhance the appearance of night sky
images.

2.2. Diffusion Models

Diffusion Models [25] are a type of probabilistic
generative model that has gained popularity in recent
years due to its ability to generate high-resolution im-
ages with diverse features. The underlying principle
behind diffusion models involves a forward process that
gradually adds noise to clean samples drawn from a
prior distribution and a reverse process that reverses
the corruption process to recover plausible samples
from the noise [45]. Diffusion models have demon-
strated their effectiveness in various image-based tasks,
such as unconditional image generation, inpainting,
colorization, image segmentation, and medical imag-
ing. Compared to other generative models such as
GANs and VAEs, diffusion models offer a stable train-
ing process and the ability to learn strong priors [25].
A Diffusion Model generates samples by gradually re-
moving noise from a signal and learning a network to
do so, while their training objective is a reweighted
variational lower bound, have shown particularly great
results for denoising images as well. In this work, we
work on fine-tuning the broad class of latent diffusion
models [59].

Another recent approach to low-light image en-
hancement using deep learning is based on proba-
bilistic models, such as conditional denoising diffusion
probabilistic models (DDPMs). Diffusion in the Dark
(DiD) [50] is a recent diffusion model for low-light
image reconstruction that provides qualitatively com-
petitive reconstructions, especially for low-light text
recognition. In contrast, our approach relies on fine-
tuning a latent Diffusion model directly on RAW sensor
data and aims at learning the entire image processing
pipeline.
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Figure 2. We show how our model is fine-tuned on text-to-
image diffusion models which requires paired RAW sensor
data and processed long-exposure image.

2.3. Low-light Photography.

Classical low-light reconstruction methods have
been widely used to enhance the quality of low-light
images, and they remain an active area of research.
These methods can be broadly classified into histogram
equalization-based methods [2, 10, 27, 33], Retinex-
based methods [4,19,23,32,51,58], and burst averaging
techniques [3, 15,73].

Histogram equalization, as described in [10], aims to
enhance image contrast by redistributing pixel inten-
sities. However, it often suffers from over-enhancing
noise in darker regions. In contrast, Retinex-based
methods separate images into reflectance and illumi-
nation components, inspired by Land’s theory of color
vision [36]. These methods include single-scale Retinex
(SSR) [11, 33], multi-scale Retinex (MSR) [56], and
adaptive MS-Retinex (AMS-R) [37, 40], each with its
unique advantages.

To address the limitations of classical techniques, re-
cent research has turned to deep learning approaches.
Convolutional neural networks (CNNs) have been em-
ployed in various papers such as [29] and [79], autoen-
coders in [5] and [63], and generative adversarial net-
works (GANs) in [28], and [48]. Additionally, diffusion-
based methods have been explored, as seen in the work
by [50]. These modern techniques enhance classical
methods by decoupling illumination and reflectance,
utilizing attention mechanisms, or applying normaliz-
ing flows to achieve improved performance and noise
robustness. Some deep learning methods even oper-
ate without the need for paired low-light/well-lit image
data, enhancing their practicality for real-world appli-
cations [35,39,75,78].

However, image enhancement algorithms are often
not suitable to be used as an entire image processing
pipeline for enhancing low-light images. This is often
because most image enhancement algorithms are only

trained with processed image pairs, which causes such
methods to be unable to perform the multitude of steps
required for the image processing pipeline as well as
causes these algorithms to not be able to handle very
low-light images.

2.4. Learning-based image processing pipeline

Recently there have been multiple data-driven or
learned image-processing pipelines developed to im-
prove low-light images. These approaches learn image-
processing pipelines using hand-crafted features [72] or
deep-learning approaches [8, 49, 81]. These algorithms
aim to propose a new image processing pipeline directly
on RAW images and the corresponding produced im-
ages are enhanced.

There have been approaches that train models to
learn the entire image-processing pipeline [8,17,69,71,
81, 82]. These works usually train a model that takes
a RAW image or a lightly processed RAW image and
handles the entire pipeline of creating an image while
performing some enhancement like producing denoised
images from low-light settings. Our work is closest to
LSID [8] which tackles the same problem, of learning
an image processing pipeline for extremely low-light
images. LSID tackles this problem by learning a con-
volutional network and handcrafting some features like
the brightness of the generated image or the black level,
this is trained on image pairs of scenes with high ex-
posure time and the same scene with varying levels
of lower exposure time, which generates noisy images.
The convolution network not only learns the entire im-
age processing pipeline but also denoises this image
well. However, our work develops a new generative
camera-processing pipeline contrary to LSID. Our ap-
proach is based on fine-tuning existing diffusion mod-
els to learn this image-processing pipeline which im-
proves upon the performance of LSID and other sub-
sequent methods and is also the first work to present
a diffusion model fine-tuned on RAW images. Our ap-
proach is also different from other Diffusion-based ap-
proaches [50, 52] which only perform image enhance-
ment on post-processed images, unlike our approach
which is a new end-to-end generative camera process-
ing pipeline.

3. Method
Given a casually captured RAW image in very low-

light settings, without any description or any other in-
formation about what the scene contains, our objective
is to generate a processed final image with the scene as
if it was taken in higher-light settings with more expo-
sure. We do not impose any restrictions on input im-
age capture settings and the captured images can have
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Figure 3. Our fine-tuning approach consists of first naively packing the RAW images, subtracting the black level, scaling
the image by an externally set amplification factor, upscaling the packed RAW images, and then fine-tuning a text-to-image
latent diffusion model conditioned on these packed RAW images.

varying numbers of photons captured per pixel. Our
approach being based on fine-tuning, in the future can
easily be modified to be guided by more diverse text
and support other high-level image editing operations
like stylization, inpainting, accessorization, and prop-
erty modification. We next provide some background
on conditional latent diffusion models (Sec. 3.1), and
then present our fine-tuning technique to develop a gen-
erative ISP (Sec. 3.2).

3.1. Conditional Latent Diffusion Models

Latent Diffusion models [59] project the input into a
lower-dimensional latent space and train the diffusion
model on this latent space instead of applying the dif-
fusion process on a high-dimensional input pixel space.
Specifically, the forward and backward diffusion pro-
cesses occur in a lower-dimensional latent space and
an encoder-decoder architecture is trained on a large
image dataset to translate images into latent codes.
At inference time, a random noise latent code goes
through the backward diffusion process, and the pre-
trained decoder is used to generate the final image. We
have a conditional latent diffusion model ϵθ, which can
be interpreted as a sequence of denoising autoencoder
ϵθ(zt, t, . . .); t ∼ U({1, . . . , T}), that is trained using a
squared error loss (or represent the denoising term in
the ELBO) to denoise some variably noisy images as
follows:

EE(x),c,ϵ∼N (0,I),t

[
∥ϵ − ϵθ(zt, t, τθ(c))∥2

2
]

(1)

where xt is some noisy image, c is a conditioning vec-
tor, τθ is an encoder that projects c to an intermediate
representation, E encodes xt into a latent representa-
tion zt, and we jointly optimize ϵθ and τθ.

3.2. DiffuseRAW: Generative ISP

In typical image processing pipelines, RAW data ob-
tained from an imaging sensor undergoes several se-

quential module applications, including white balance,
demosaicing, denoising, sharpening, color space conver-
sion, gamma correction, etc., where these modules are
frequently calibrated specifically for individual camera
models. [62] suggested using numerous localized, lin-
ear, and learned filters collectively termed “L3” filters
to mimic the intricate nonlinear pathways witnessed
in current-day commercial imaging solutions. Previous
deep-learned ISP methods are often trained using some
kind of convolutional architecture [8,62]. However, pro-
cessing low-light images is an ill-posed problem since
many possible reconstructed images could be consis-
tent with the measurements. Using pre-trained gen-
erative models allows us to exploit learned priors and
generate processed images that obey the learned natu-
ral image statistics. Our approach needs to learn these
multiple stages of a typical image processing pipeline
for it to be an end-to-end generative ISP. This pipeline
is summarized in Figure 3.

Demosaicing. Demosaicing is a crucial step in im-
age processing pipelines, particularly in digital imaging
systems that use color filter arrays to capture images.
In such systems, each pixel on the image sensor is as-
signed to detect only one primary color resulting in a
spatially undersampled color image. Demosaicing re-
constructs a full-color image from this mosaic by esti-
mating the missing color values at each pixel location.

The sensor first gives us a Bayer RAW image and
then our approach involves compressing the given in-
formation naively into four distinct channels. Conse-
quently, there is a reduction in the original spatial res-
olution by half in both dimensions,

(
H
2 , W

2
)
-sized im-

ages. Additionally, we then subtract the black level
and scale the brightness of the input images by some
amplification factor, α that is manually set. We then
employ simple bicubic upsampling to upsample the in-
put image back to (H, W )-sized images



Fine-tuning Approach. Incorporating a condition-
ing vector in classifier-free diffusion guidance [26] relies
on training a conditional and an unconditional model
for some conditioning c. This score estimate is modi-
fied towards the conditional model and away from the
unconditional model. So we can calculate the modified
score estimate as follows:

ẽθ(zt, c) = eθ(zt, ϕ)︸ ︷︷ ︸
unconditional model

+ s ( eθ(zt, c)︸ ︷︷ ︸
conditional

model

− eθ(zt, ϕ)︸ ︷︷ ︸
unconditional

model

)

︸ ︷︷ ︸
move towards conditional model

and away from unconditional model

(2)

where s represents the level of guidance, c represents
the conditioning vector, ϕ represents a conditioning
vector representing some fixed null value, and zt rep-
resents the latent representation.

Following this, in our case, we have two condition-
ing vectors: the input dark images cI and the text
conditioning vector for high-level editing tasks cT . We
use classifier-free diffusion guidance for both of these
conditioning vectors and compose score estimates from
these two conditioning vectors [41]. During fine-tuning,
we randomly set only cT = ϕT for 5% of examples,
and both cI = ϕI and cT = ϕT for 5% of examples
which allows the model to be capable of conditional
or unconditional denoising with respect to both or any
of conditional inputs: on RAW images or text con-
ditioning. As in InstructPix2Pix [41], we also have
two separate guidance scales sI representing the image
guidance scale, and sT representing the text guidance
scale, which can be adjusted to trade off how strongly
the generated samples correspond with the input RAW
image and how strongly they correspond with the text
conditioning. Thus, our score estimate is as follows:

ẽθ(zt, cI , ct) = eθ(zt, ϕI , ϕT )︸ ︷︷ ︸
unconditional model

+ sI ( eθ(zt, cI , ϕT )︸ ︷︷ ︸
image conditioned

− eθ(zt, ϕI , ϕT )︸ ︷︷ ︸
unconditional model

)

︸ ︷︷ ︸
move towards cI conditioned model
and away from unconditional model

+ sT (eθ(zt, cI , cT )︸ ︷︷ ︸
image and

text conditioned

− eθ(zt, cI , ϕT )︸ ︷︷ ︸
image conditioned

)

︸ ︷︷ ︸
move towards conditioned model

and away from cI conditioned model
(3)

Our approach is based on fine-tuning standard la-
tent diffusion models like Stable Diffusion [59] which

×100 ×250 ×300
Model LPIPS ↓ LPIPS ↓ LPIPS ↓
LRD [82] 0.2822 0.3013 0.3394
LSID [8] 0.3982 0.4342 0.4648
Ours 0.2793 0.3032 0.3184

Table 1. Quantitative results on the Sony subset of the SID
dataset [8] in terms of LPIPS ↓ [84] for the best open-spurce
models in the split. The results are conducted on different
amplification ratios (×100, ×250, ×300).

×100 ×200
Model LPIPS ↓ LPIPS ↓
PMN [17] 0.3197 -
LRD [82] - 0.3184
Ours 0.3034 0.3101

Table 2. Quantitative results on the SonyA7S2 subset of
the ELD dataset [71] in terms of LPIPS ↓ [84] for the best
open-spurce models in the split. The results are conducted
on different amplification ratios (×100, ×200).

are often trained for the task of text-to-image genera-
tion. To support our suite of tasks we add additional
channels to the first layer of the underlying UNet, con-
catenating the latent codes for variably noisy images zt

and latent codes for the image conditioning E(cI) [41].
We use the same text encoder for the text conditioning
vectors cT as in these text-to-image generation mod-
els which were trained with text conditioning contrary
to the popular approach of replacing the text encoder
with an independent image encoder [54]. To do so, our
approach also relies on generating a set of text prompts
for this task and uses these text prompts in addition
to the RAW and long-exposure processed image pairs.
These text prompts could also potentially be used to
guide the model for a variety of other downstream high-
level tasks as well.

3.3. Training

We fine-tune our models from Stable Diffusion
v1.5 [54, 59] and fine-tune these models on the See
in the Dark (SID) [8] and Extreme Low-light Denois-
ing (ELD) [71] dataset. We fine-tune these mod-
els independently for each camera type. For both
of these datasets, while training we use the short-
exposure Bayer RAW images which are then packed
into four channels (R-Gr-B-Gb) from the dataset, and
the corresponding processed long-exposure images (us-



ing rawpy [57]) in the sRGB space. Following [8,71] we
set the amplification ratio to be the exposure difference
between the input and reference images (we use ×100,
×250, ×300 for the SID dataset and ×100, ×200 for
the ELD dataset) for both training and testing. We
train the model on 5122 patches which are made as
suggested in [64].

4. Experiments
4.1. Implementation Details

Dataset. We use noisy-clean pairs from the Sony
subset of the SID [8] and ELD [71] dataset. The im-
ages in the Sony subset of the SID dataset which are
collected using Sony α7SII in 231 static scenes across
three low-light factors. There are 1865 image pairs for
training, 234 for validation, and 598 for testing. The
Sony subset of the ELD dataset consists of 60 low-light
image pairs across two low-light factors, which are also
captured using the same camera as the SID dataset.

We furthmore, augment all training samples with
random crop, random horizontal flip, and use Au-
toAugment [12]. We use the Adam [34] optimizer, with
a learning rate of 5e − 5, 500 warmup steps, 1e − 2
weight decay, cosine annealing, and use a batch-size of
64. We train the model for 300 epochs. Our code
is in PyTorch 2.0 [53]. We use a number of open-
source packages to develop our training workflows, par-

Scaled RAW images Long-exposure images

Figure 4. The scaled images and long-exposure ground-
truth images for the same scene across three different low-
light factors ×100 (first row), ×250 (second row), and ×300
(third row) captured on Sony α7SII with an ISO of 10000.

×100 ×200
Model PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
BM3D [13] 37.69 0.803 34.06 0.696
N2N [38] 41.63 0.856 37.98 0.775
P+G [18,
71]

41.76 0.930 39.33 0.872

NoiseFlow [1] 41.05 0.925 39.23 0.889
Exposure
Diffu-
sion [69]

43.29 0.929 40.39 0.873

ELLE [67] 43.11 0.940 40.30 0.884
Starlight [48] 43.80 0.936 40.86 0.884
ELD [71] 45.45 0.975 43.43 0.954
LRD [82] 44.95 0.979 43.32 0.966
LSID [8] 44.47 0.968 41.97 0.928
PMN [17] 46.50 0.985 44.51 0.973
LLD∗ [7] 46.74 0.986 44.95 0.977
Ours 47.56 0.985 45.12 0.981

Table 3. Quantitative results on the SonyA7S2 subset of
the ELD dataset [71] in terms of PSNR ↑ and SSIM ↑.
The results are conducted on different amplification ratios
(×100, ×200).

ticularly we use Huggingface Diffusers [66], Acceler-
ate [21], Transformers [74], and rawpy [57]. We uti-
lized mixed-precision training with PyTorch’s native
AMP (through torch.cuda.amp) for mixed-precision
training which allowed us to obtain significant boosts
in the overall model training time. Our experiments
are conducted on TPUv3-8 and we run test-scripts on
Tesla A100.

4.2. Comparison with state-of-the-art methods

In order to demonstrate the reliability of our pro-
posed generative camera ISP: DiffuseRAW, we conduct
experiments on the SID [8] and ELD [71] datasets for
learning the entire image processing pipeline from the
RAW data.

We quantitatively compare our results on the Sony
subset of the SID [8] dataset with non-learned methods
like BM3D [13] and A-BM3D [47], models based on
different noise models [18,38,71], and neural-net based
learning methods [1, 8, 48, 69], which include state-of-
the-art models. We summarize these results in Table 4
and Table 1 and demonstrate the performance of our
approach over different low-light factors. We compare
these models based on PSNR ↑ , SSIM ↑ , and LPIPS
↓ [84]. As we can see Table 4 and Table 1, DiffuseRAW
achieves better performance than other state-of-the-art



Scaled Images BM3D [13] LSID [8] PMN [17] Ours (DiffuseRAW) Ground Truth

Figure 5. We show results on learning the entire image processing pipeline for extremely low-light enhancement and we
compare our approach qualitatively to the best-performing open-source model. These images are taken with Sony α7SII
and the illuminance at the camera is < 0.1 lux. We show both indoor and outdoor scenes. (Best viewed in color and
with zoom.)

learned methods across most metrics and most low-
light factors. We particularly observe that DiffuseRAW
performs significantly better than current state-of-the-
art models for ×300 low-light factor which is a more
challenging task.

We also show visual results for our approach and
compare it with other approaches in Figure 5. Though
we notice that our model particularly performs very
well for ×250 and ×300, we show the difference between
different low-light factors in Figure 4, we show that our

(a) Traditional Pipeline (b) Ours (DiffuseRAW)

Figure 6. We qualitatively compare our model with a tra-
ditional pipeline with ×100 low-light factor on the SID [8]
dataset.

model performs well for the ×100 task as well which we
show qualitatively in Figure 6. We also compare our
model on the same scene across low-light factors which
we show in Figure 7.

We quantitatively compare our results on the Sony
subset of the ELD [71] dataset with non-learned meth-
ods, models based on different noise models [18,38,71],
and neural-net based learning methods [1, 8, 48, 69],
which include state-of-the-art models. We summarize
these results in Table 3 and Table 2 and demonstrate
the performance of our approach over different low-
light factors. We compare these models based on PSNR
↑ , SSIM ↑ , and LPIPS ↓ [84]. As we can see Table 3
and Table 2, DiffuseRAW achieves better performance
than other state-of-the-art learned methods for ×200
low-light factor which is a more challenging task and
performs marginally better across the ×100 low-light
factor in terms of PSNR ↑.

5. Conclusion

Our method creates a new generative camera ISP for
extreme low-light image enhancement that learns the
entire image processing pipeline as a diffusion model.
Our approach showcases how we can make use of ample
image priors in pre-trained text-to-image latent diffu-
sion models for learning tasks in the RAW space. We
not only demonstrate the effectiveness of working di-



×100 ×250 ×300
Model PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
BM3D [13] 32.92 0.758 29.56 0.686 28.88 0.674
A-BM3D [47] 33.79 0.743 27.24 0.518 26.52 0.558
N2N [38] 37.42 0.853 33.48 0.725 32.37 0.686
P+G [18,71] 38.31 0.884 34.39 0.765 33.37 0.730
NoiseFlow [1] 38.89 0.929 35.80 0.867 32.29 0.801
Exposure
Diffusion [69]

38.89 0.902 36.02 0.832 35.00 0.808

ELLE [67] 40.09 0.931 36.13 0.863 32.54 0.782
Starlight [48] 40.47 0.926 36.25 0.858 32.99 0.780
ELD [71] 41.95 0.953 39.44 0.931 36.36 0.911
LRD [82] 41.95 0.956 39.25 0.931 36.03 0.909
LSID [8] 42.06 0.955 39.60 0.938 36.85 0.923
SFRN [85] 42.29 0.951 40.22 0.938 36.87 0.917
PMN [17] 43.16 0.960 40.92 0.947 37.77 0.934
LLD∗ [7] 43.36 0.961 41.02 0.948 37.80 0.935
Ours 44.93 0.986 43.46 0.956 39.98 0.951

Table 4. Quantitative results on the Sony subset of the SID dataset [8] in terms of PSNR ↑ and SSIM ↑. The results are
conducted on different amplification ratios (×100, ×250, ×300).

rectly on RAW sensor data for such downstream tasks
rather than operating on images processed through
some traditional image-processing pipeline but also

Scaled Images Ours (DiffuseRAW)

Figure 7. We compare our model on the same scene on
different low-light factors for which we observe that the
model produces consistent results across different low-light
factors, we demonstrate ×100 for the first row and ×300
for the second row.

show the effectiveness of diffusion models to learn in the
RAW sensor data space. Parallel to how diffusion mod-
els tackle these problems today: learning on processed
images, we hope that with this work, we foster further
research on using diffusion models and other generative
models for tackling the image processing problem and
other problems in the RAW space.

Limitations. Although our approach, DiffuseRAW
generates plausible results, there are several limitations
of this work and avenues for future work. An important
aspect of performing general low-light camera process-
ing is being able to handle the changing exposure of
an image. Secondly, our approach currently does not
learn exposure settings well for general scenes or cam-
eras. Our model in its current form is also only able
to handle the ISP pipeline for images, an interesting
avenue this work could be expanded to would be to
explore how we could use similar approaches for video
ISP tasks. Finally, we notice, that our approach heav-
ily relies on the use of a proper augmentation regime
which could make it challenging to train a model that
works for multiple kinds of cameras and learns a uni-
versal ISP.
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