
Goodbye Repetitive Tasks, You Won’t Be Missed
 Christina Chung

UTORid: chungc37
Teaching Labs ID: g4rice

ABSTRACT
The advent of the graphical user interface (GUI) has
provided users with an easy and intuitive way to operate a
computer. Although it alleviates many of the struggles faced
by laypersons when adopting new technologies, the GUI
suffers from an inherent lack of programmability and the
ability to specify abstract commands. Oftentimes, users must
manually carry out repetitive tasks, such as the transferring
of multiple files from one application into another. This work
provides an overview of the literature that has insofar
attempted to support repetitive GUI tasks, the problems that
still need to be addressed, and possible directions for future
work.

DIRECT MANIPULATION IS PASSÉ
Since its introduction in the Apple Macintosh in 1984, the
graphical user interface (GUI) supplanted the traditional
command line and has come into widespread use. By making
elements tangible and directly manipulable, the GUI
provides an easy-to-use interface for non-programmers to
operate a computer [25]. But with the good comes the bad:
while complex, low-level operations of a computer can now
be abstracted away, the GUI suffers from an inherent lack of
programmability, subjecting users to manually performing
repetitive tasks [20].

In concrete terms, a repetitive task is a sequence of actions
that is repeated multiple times in succession, such as
renaming several files in a directory. Tasks such as these can
be tedious for the able-bodied, and challenging for the
impaired [13]. Command lines, on the other hand, do not
have this problem—users with the expertise can carry out
tasks with ease and efficiency. Because of this, some users
feel that using a GUI is sometimes more difficult than
necessary, and frequently find themselves relegating back to
the command line.

So, problem solved. Take the best of both worlds and use
command lines and direct manipulation, depending on what
the situation calls for. Perhaps this is a viable option for adept
users, but learning how to code is not easy an endeavor and
many non-programmers struggle when attempting to do so
[23].

The begs the question of how one would efficiently carry out
repetitive tasks and without being encumbered by command
lines. Naturally, this would entail bridging the user-
programmer gap. A popular approach is to provide support
for end-user programming; that is, the ability for non-expert
users to program their computers [20]. This review surveys
the literature that has sought to facilitate end-user

programming, further discusses the technologies that have
been developed for supporting repetitive tasks on the GUI
and areas where additional work is needed.

BRIDGING THAT USER-PROGRAMMER GAP
Human brains are hardwired to process multi-faceted data.
Textual code, which presents instructions in a one-
dimensional manner, does not leverage the full capabilities
of the human brain. Visualizations, on the other hand, are
upheld as useful aids in program understanding [21].

To assuage the challenges of parsing and writing code, early
approaches explored the use of visualizations. The earliest
example was in 1959, when Haibt developed a system that
could generate flowcharts describing code written in Fortran
or Assembly [12].

Since then, researchers also played with the idea of
incorporating visualizations into the coding process, giving
birth to the notion of a visual program. In Myer’s definition,
a visual program is “any system that allows the user to
specify a program in a two (or more) dimensional fashion”
[21], for example, by graphically representing sequences of
commands that can compiled into executable instructions.

Visual programming has its roots dating back to as early as
the 1960s, when Sutherland developed a graphical
programming system (with semblance to circuit diagrams),
that could compute primitive operations such as the square
root of a number [26]. Further work explored the use of flow
charts. Grail, for instance, would compile into machine
language directly from charts produced by the user [11] and
in a similar vein, GAL compiled into Pascal [1].

In spite of this, the skills needed to parse a visual program
are almost up to par with those in making sense of textual
code. While these tools may benefit those who are already
experienced programmers, they lack practicality for the
layperson. Furthermore, when procedures grow in size and
complexity, visual code often becomes overwhelming, both
in terms of physical space that they occupy and the cognitive
load that they impart on the user. Visual code begins to
resemble a “maze”, as Myer purports [21]. In such situations,
visualizations lack feasibility.

To truly bridge the non-programmer technological gap, all
code must be abstracted away. This is where programming-
by-demonstration (PBD) comes into play. In PBD, the
computer attempts to intuit intended behaviors from user
demonstration [7]. PBD systems are a particularly attractive
options, because they make it possible for users to produce
executable instructions without having to touch a single
piece of code. The very first PBD systems, however, were

quite rudimentary—users would essentially provide
examples of the input and the desired output of a program,
the computer would then use this information to infer
executable instructions [24]. Later on, more advanced
systems were developed that could actually learn from users
demonstrating behaviors [8,19].

GOODBYE REPETITIVE TASKS
To assist users in carrying out repetitive tasks, many
technologies turned to PBD. In essence, these technologies
attempt to automate repetitive behaviors by learning from
user demonstration. Some early examples include
CoScriptor for automating web-processes [16], DocWizards
supports tasks for the Eclipse platform [4], and SMARTedit
automates the formatting of text based on a few examples
provided by the user [15].

These systems, however, are limited in a number of ways:
they cannot support cross-application interaction, they are
unable to generalize beyond what was demonstrated by the
user, and they lack the ability to understand user context.

PROBLEMS, MORE PROBLEMS, AND A SOLUTION?
The issues surrounding prior GUI automation systems in
supporting repetitive tasks, as well as how modern-day
systems have sought to address them, are discussed below.
We further describe a prototypal system that we developed
for the purposes of experimenting with new design
considerations.

Cross-application Interaction
One primary challenge in supporting automation on a cross-
application level is knowing where GUI elements are
positioned, as this information is often not provided by
application developers. To detect GUI elements, a popular
technique is to leverage computer vision, using variations of
template matching and feature detection [18,27]. Tasks are
then automated by detecting the location of the GUI elements
in question, and inducing the necessary user actions on these
elements. For instance, if one would like to automate the
process of deleting a file, these systems would first detect the
file’s location, move the mouse to where the file is located
on the screen, and then perform the click events needed to
delete the file. These computer visions techniques have been
used by a number of applications: providing contextual help
when interacting with a desktop computer [28], testing GUI
elements [5], creating context-aware video tutorials [6,22],
and automating GUI tasks on computers [13].

Unfortunately, computer vision techniques break down when
GUI elements substantially change in appearance. With this
approach, users are also literally shown the sequences of
actions being carried out on the screen during the automation
of a task. We believe this may be hindrance, as it precludes
users from engaging in other computer activities while tasks
are executing. Updating the GUI repeatedly also consumes
computational resources, leading to an increased processing
time.

Generalizability
Many earlier systems lack the ability to generalize to new
tasks, and simply repeat exactly what was done by the user—
nothing more, nothing less. Modern systems have attempted
to support some generalizability. Notably, Help, It Looks
Confusing (HILC), which automates GUI interactions on
desktop computers might detect that a user is importing
images into PowerPoint generalize this behavior to other
images [13]. Additionally, SUGILITE automates GUI tasks
on mobile devices [17]. One might teach SUGILITE to order
a Starbucks Cappuccino but the macro for that task could be
generalized to ordering an Iced Cappuccino as well. Yet, the
functionality is still quite limited. For instance, a macro for
ordering and Ice Cappuccino in SUGILITE would not be
able to work for ordering a coffee, despite the similarity
between the two tasks. Furthermore, generalizability brings
forth a new problem. To the user, it can be a mystery how
behaviors are learned by the system. Users may find
themselves uncertain of whether the system will do as
intended, or go completely awry. Often, they feel
apprehensive about running automations [14].

To address this problem, systems supporting generalizability
incorporate corrective mechanisms, yet the approaches taken
are laden with issues. For example, users of SUGILITE have
access to each macro’s source code, for which they can
modify to its intended behavior. But in its evaluation, users
did not perceive the feature to be useful, as the code was
often hard to parse. In a similar vein, HILC queries users with
follow-up questions if an action is deemed ambiguous. This
may diminish the user's sense of control, since they cannot
modify macros directly to their intentions, but must rely on
the system to propose them [3].

Context-awareness
To automate repetitive tasks, previous systems employed
macros, which essentially require users to pre-record the
actions that they would like to automate. These macros could
then be replayed by the user when needed.

With advancements in artificial intelligence, there is a
growing desire to have systems that can understand its user’s
intentions [3]. This is known as context-awareness, the
ability of a computer “to provide relevant information and/or
services to the user” [10]. With respect to PBD systems, this
would entail programming the system to detect repetitive
behavior purely by recognition (i.e., without the use of a
macro), as well as identifying the contexts and conditions for
which a macro should execute. Systems should be able to
recognize the time of day or location for which an
automation should occur, for instance.

Unfortunately, GUI automation systems have not been able
to meet these goals. At present, identifying repetitive
behavior without prior knowledge is a complex problem that
necessitates robust noise and sequence detection in high-
volume, high-dimensional data [9]. And unlike other
approaches in machine learning, which have access to large

amounts of training data, PBD systems must learn behavior
from a few examples.

Some researchers have forayed into this domain, but have
largely failed due to faulty detections [2]. Resultantly, many
modern systems, such as HILC and SUGILITE, resort to the
use macros.

Autopilot: A Prototypal System
Autopilot is a prototypal system that we developed to test the
feasibility of some novel interaction techniques for
supporting repetitive tasks. Autopilot, like other modern-day
systems, leverage PBD, given its benefits in eliminating all
need to code. The design of Autopilot was largely shaped by
SUGILITE and HILC, as they are both, respectively, the
state-of-the art for mobile and desktop GUI interactions. Due
to current setbacks that impede accurate detection of
repetitive behavior, like SUGILITE and HILC, Autopilot
opted for the use of macros. The system is also able to
generalize its macros to other tasks that are similar in nature.

Autopilot proposed two design considerations aimed to
improve existing systems. The first were its corrective
mechanisms. In Autopilot, users may remove any undesired
action from a macro. Secondly, using principles in visual
programming to help users make sense of commands [21],
each step of a macro is displayed with an accompanying
screenshot and a descriptive text of the associated action.
SUGILITE, on the other hand, provides the users with
editable source code, which was reportedly hard to parse; and
HILC queries users with follow-up questions if an action is
deemed ambiguous, rather allowing users to decide when
corrective measures are needed. We posit that this design
choice might compromise the user’s sense of control.

In HILC and SUGILITE, macros are literally carried out on
the screen. We believe this is a shortcoming, since it
precludes engaging in other computer activities during the
execution of a macro. For example, when ordering an Iced
Cappucino, SUGILITE literally has to pull up the Starbucks
application and manipulate GUI elements on the screen. The
user is then forced to halt whatever tasks they were
previously working on. Autopilot mitigates this issue by
enabling repetitive tasks to occur behind the scenes.

In Autopilot’s preliminary evaluation, we were unable to
determine whether these design considerations are indeed
better than those of the state-of-the-art. However, we did
receive insights regarding each participant’s thoughts on
GUI automation systems. Essentially, the same concerns
about prior systems were brought up by our participants.
Notably, participants were apprehensive about running a
macro as they were unsure of how it might alter the state of
their operation system. Participants also expressed the desire
for advanced capabilities, such as greater context-awareness,
by being able to detect repetitive behaviors without the use
of a macro.

TOWARDS THE FUTURE
PBD is now one of the more largely attempted approaches
used to support repetitive GUI tasks. Yet, the paradigm still
faces a slew of issues that need to be tackled.

Hide it All
Users should not have to see GUI tasks being carried out on
the screen. Developers and designers should seek ways to
make this possible. Perhaps this could be solved by having
developers of applications provide an API for interacting
with GUI elements, despite the additional overhead in
supporting the functionality. This will allow for GUI
operations to occur behind the scenes, rather than having to
induce literal mouse and keyboard events using the
traditional computer vision approach [27].

Correct Me If I’m Wrong
Moving forward, it is of paramount importance to find an
easy way for users to visualize an automation’s behavior and
modify its rules if needed, perhaps by exploring different
visualization techniques. Existing systems currently have no
adequate way of doing this and suffer tremendously in this
domain. Better corrective mechanisms will increase the
amount of trust that users have in their systems, and prevent
these systems from going awry.

Sweeping Generalizations Are Good
The generalizability of these systems are still subpar in
comparison to user expectations and more work is needed in
developing better algorithms for generalizing learned rules
to other tasks.

Provide Some Context
Attention should be directed toward improving context-
awareness. For example, participants in our evaluation of
Autopilot seemed to want the system to accomplish more
than its current capabilities, for instance, by defining the
specific contexts for which automation should occur, and to
detect repetitive behavior purely by recognition. This will
ultimately entail giving computers the ability to identify of
human routine behavior, and the contexts and conditions for
which particular repetitive tasks should be automated.

A Right Amount of Balance
According to Barkhuus and Dey, context-aware applications
can be characterized in two ways [3]. On the one hand, the
system can carry out actions automatically regardless of the
user’s intentions. This is known as active awareness. Passive
awareness, on the other hand, is when the system has
contextual information, but does not act upon it without the
user’s permission. In their study, Barkhuus and Dey found
that awareness compromises one’s sense of control, since
activities that one would normally carry out are now taken
over by the system.

As context-aware designs are becoming increasingly
prevalent [3], a question of growing concern is how to seek
a balance between providing enough context without
compromising too much control.

CONCLUSION
Without a doubt, the GUI supersedes the command line when
it comes to bridging the user-programmer gap. Sadly, it lags
far behind in supporting repetitive tasks. In this review, we
survey prior work that has attempted to address this
shortcoming, chiefly by supporting end-user programming.
From assisting the process of writing code to writing code on
the user’s behalf—we begin with the grounding literature on
visual programs and move onwards to discuss modern-day
systems that leverage programming-by-demonstration.
While state-of-the-art technologies have come a long way
since the GUI was first conceived, there are still a host of
issues that have yet to be solved. Primarily, there is a divide
between users desires and what can be accomplished with
existing technology. Future work should seek to bridge this
divide.

REFERENCES
1. Miren Begona Albizuri-Romero and Miren Begona.

1984. GRASE: a graphical syntax-directed editor for
structured programming. ACM SIGPLAN Notices 19, 2:
28–37. https://doi.org/10.1145/948566.948567

2. Ville Antila, Jussi Polet, Arttu Lamsa, and Jussi Liikka.
2012. RoutineMaker: Towards end-user automation of
daily routines using smartphones. In 2012 IEEE
International Conference on Pervasive Computing and
Communications Workshops, 399–402.
https://doi.org/10.1109/PerComW.2012.6197519

3. Louise Barkhuus and Anind Dey. 2003. Is Context-
Aware Computing Taking Control away from the User?
Three Levels of Interactivity Examined. . Springer,
Berlin, Heidelberg, 149–156.
https://doi.org/10.1007/978-3-540-39653-6_12

4. Lawrence Bergman, Vittorio Castelli, Tessa Lau, and
Daniel Oblinger. 2005. DocWizards: A System for
Authoring Follow-me Documentation Wizards. In
Proceedings of the 18th annual ACM symposium on
User interface software and technology - UIST ’05,
191–200. https://doi.org/10.1145/1095034.1095067

5. Tsung-Hsiang Chang, Tom Yeh, and Robert C. Miller.
2010. GUI Testing Using Computer Vision. In
Proceedings of the 28th international conference on
Human factors in computing systems - CHI ’10, 1535.
https://doi.org/10.1145/1753326.1753555

6. Kai-Yin Cheng, Sheng-Jie Luo, Bing-Yu Chen, and
Hao-Hua Chu. 2009. SmartPlayer: user-centric video
fast-forwarding. In Proceedings of the 27th
international conference on Human factors in
computing systems - CHI 09, 789.
https://doi.org/10.1145/1518701.1518823

7. Allen. Cypher, Daniel Conrad. Halbert, David
Kurlander, Henry Lieberman, David Maulsby, Brad A.
Myers, and Alan Turransky. 1993. Watch what I do :
programming by demonstration. MIT Press.

8. Allen Cypher and David Canfield Smith. 1995. KidSim:

end user programming of simulations. In Proceedings of
the SIGCHI conference on Human factors in computing
systems - CHI ’95, 27–34.
https://doi.org/10.1145/223904.223908

9. Himel Dev and Zhicheng Liu. 2017. Identifying
Frequent User Tasks from Application Logs. In
Proceedings of the 22nd International Conference on
Intelligent User Interfaces - IUI ’17, 263–273.
https://doi.org/10.1145/3025171.3025184

10. Anind K. Dey and Anind K. 2001. Understanding and
Using Context. Personal and Ubiquitous Computing 5,
1: 4–7. https://doi.org/10.1007/s007790170019

11. T. O. Ellis, J. F. Heafner, and W. L. Sibley. 1969. The
Grail Project: An Experiment in Man-Machine
Communcation.

12. Lois M. Haibt and Lois M. 1959. A Program to Draw
Multilevel Flow Charts. In Papers presented at the the
March 3-5, 1959, western joint computer conference on
XX - IRE-AIEE-ACM ’59 (Western), 131–137.
https://doi.org/10.1145/1457838.1457861

13. Thanapong Intharah, Daniyar Turmukhambetov, and
Gabriel J. Brostow. 2017. Help, It Looks Confusing:
GUI Task Automation Through Demonstration and
Follow-up Questions. In Proceedings of the 22nd
International Conference on Intelligent User Interfaces
- IUI ’17, 233–243.
https://doi.org/10.1145/3025171.3025176

14. Tessa Lau. 2009. Why Programming-By-Demonstration
Systems Fail: Lessons Learned for Usable AI. AI
Magazine 30, 4: 65.
https://doi.org/10.1609/aimag.v30i4.2262

15. Tessa Lau, Steven A. Wolfman, Pedro Domingos, and
Daniel S. Weld. 2003. Programming by Demonstration
Using Version Space Algebra. Machine Learning 53,
1/2: 111–156.
https://doi.org/10.1023/A:1025671410623

16. Gilly Leshed, Gilly Leshed, Eben M. Haber, Tara
Matthews, and Tessa Lau. CoScripter: Automating and
Sharing How-To Knowledge in the Enterprise. In
Proceedings of the 27th international conference on
Human factors in computing systems - CHI 09, 789.

17. Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers.
2017. SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration. 2008. In Proceedings of
the 2017 CHI Conference on Human Factors in
Computing Systems - CHI ’08, 1719-1728.

18. D.G. Lowe. 1999. Object recognition from local scale-
invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, 1150–
1157 vol.2. https://doi.org/10.1109/ICCV.1999.790410

19. Richard G. McDaniel and Brad A. Myers. 1999. Getting
more out of programming-by-demonstration. In
Proceedings of the SIGCHI conference on Human

factors in computing systems the CHI is the limit - CHI
’99, 442–449. https://doi.org/10.1145/302979.303127

20. B.A. Myers. 1992. Demonstrational interfaces: A step
beyond direct manipulation. Computer 25, 8: 61–73.
https://doi.org/10.1109/2.153286

21. B. A. Myers, B. A., Myers, and B. A. 1986. Visual
programming, programming by example, and program
visualization: a taxonomy. In Proceedings of the
SIGCHI conference on Human factors in computing
systems - CHI ’86, 59–66.
https://doi.org/10.1145/22627.22349

22. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue
Wang, Lubomir Bourdev, Shai Avidan, and Michael F.
Cohen. 2011. Pause-and-play: Automatically Linking
Screencast Video Tutorials with Applications. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11,
135–144. https://doi.org/10.1145/2047196.2047213

23. Haider Ramadhan and Benedict du Boulay. 1993.
Programming Environments for Novices. . Springer,
Berlin, Heidelberg, 125–134.
https://doi.org/10.1007/978-3-662-11334-9_12

24. David E. Shaw, William R. Swartout, and C. Cordell
Green. 1975. Inferring LISP Programs From Examples.
Proceedings of the 4th international joint conference on
Artificial intelligence - Volume 1, 260–267. Retrieved
December 4, 2017 from
https://dl.acm.org/citation.cfm?id=1624666

25. Ben Shneiderman. 1983. Direct Manipulation: A Step
Beyond Programming Languages. Computer 16, 8: 57–
69. https://doi.org/10.1109/MC.1983.1654471

26. William Robert Sutherland. 1966. The On-Line
Graphical Specification of Computer Procedure.
Massachusetts Institute of Technology.

27. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.
2009. Sikuli: Using GUI Screenshots for Search and
Automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology -
UIST ’09, 183–192.
https://doi.org/10.1145/1622176.1622213

28. Tom Yeh, Tsung-Hsiang Chang, Bo Xie, Greg Walsh,
Ivan Watkins, Krist Wongsuphasawat, Man Huang,
Larry S. Davis, and Benjamin B. Bederson. 2011.
Creating Contextual Help for GUIs Using Screenshots.
In Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11, 145.
https://doi.org/10.1145/2047196.2047214

