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ABSTRACT
It is well-known that tasks imposing high cognitive load, i.e., the
mental e�ort required to carry out a task, place a strain on peo-
ple’s ability to perform. In light of this, the present study investi-
gates whether poor performance also occurs in human-computation
games. �at is, do players perform be�er in game designs that in-
crease the visual information presented? �ese designs have the
advantage of exposing players to more of the solution space, but
may come with the caveat of imposing a higher cognitive load. We
present a case study by considering alternative layouts di�ering
in the amount of visual information given to players in a human-
computation game. �e �ndings of the study seem to support the
idea that presenting more information is bene�cial to players. �is
is surprising result that challenges prevailing beliefs about cognitive
load, and invites more detailed, future investigation.
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1 INTRODUCTION
Human-computation games have emerged as a promising way of
employing human abilities to solve problems that are di�cult for
computers. While traditionally used to solve cognitive problems
such as image tagging [18], in recent years, games have shown
success in solving computationally expensive problems, which in-
clude protein folding [6], protein sequence alignment [11], so�ware
veri�cation [8], and model merging [5].
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To solve these problems, the games typically leverage human
pa�ern recognition abilities by encoding the problems in a visual
manner. As an example, a game for protein folding known as Foldit
presents proteins in their three-dimensional molecular form, for
which players must use their visual abilities to identify optimal con-
�gurations [6]. Analogously, the protein alignment game described
by Kawrykow et al. requires players to match colorful blocks which
encode protein sequences [11]. Dietl et al. developed a game for
so�ware veri�cation that represents programs by a network of
pipes and balls. Players derive a proof of correctness by aligning
the pipes to allow all of the balls to freely travel through them [8].

In light of the increasing importance of human-computation
games for solving complex problems and their heavy reliance on
human visual abilities, it is imperative to understand how player
performance interplays with the amount of visual information
presented.

It is well-known that human working memory has a �nite ca-
pacity; storing only a few elements of information at any given
time [12], and if not retained, the information is lost within thirty
seconds [7]. In addition to storing information, working memory
is responsible for processing information during cognitive tasks.
A direct implication to this is that if many elements are stored
in working memory and if the task at hand is demanding, then
cognitive overload may occur (whereby the mental e�ort required
to complete a task exceeds the brain’s capacity), resulting in poor
performance.

�is corroborates with empirical evidence showing impediments
on performance during tasks which impose high cognitive load [2–
4, 15]. �is may suggest that game designers should reduce the
visual information given to players to preclude the possibility of
hindering performance.

Yet, inducing higher cognitive load has no bene�ts for the tasks
described in these studies. For instance, employing ine�ective
problem-solving strategies [15] and instruction manuals [4] does
not mediate performance in any way. In contrast, players may
bene�t from seeing more information in a human-computation
game. Seeing more exposes players to more of the solution space,
allowing them to identify be�er solutions. In the case of protein
folding, being able to see the entire protein helps players identify
the best places at which to con�gure them. As described in the
literature, players still perform well even for proteins that are large
and complex [6].

Presently, it is unclear as to whether designers should a�empt
to minimize or maximize the visual information given to players.
Would players bene�t from seeing more information, or would the
higher cognitive load place too much of a burden on their ability to
perform? As noted in the literature, research in human factors for
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Figure 1: An example of n-way matching on inputs N1, N2,
and N3.
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Figure 2: �e representation of elements from Figure 1 in
MATCHMAKERS.

guiding these designs is wanting [9, 10, 16]. Given that these games
rely on human visual abilities, knowing how much information
should be presented in order to optimize player performance is of
paramount importance to designing a successful game.

We conduct a case study to address this question using MATCH-
MAKERS [5], a game that solves a computationally-expensive prob-
lem known as n-way matching [14].

We begin by describing MATCHMAKERS and n-way matching
in Section 2. We then outline the research question, the design of
the study and disseminate the results in Section 4. In Section 5 and
6, we discuss the study’s implications and limitations. Finally, we
conclude in Section 7.

2 MATCHMAKERS
MATCHMAKERS [5] is a game that aims to solve n-way match-
ing [14], the process of identifying similar elements between dis-
tinct inputs. N-way matching has applications in many so�ware
engineering practices, such as merging branches of a so�ware con-
�guration management system. Yet, the problem is NP-hard, and
existing algorithmic approaches used to solve it either do not scale
or do not guarantee high-quality solutions [14].

Figure 1 depicts an example of matching the elements in inputs
N1, N2, and N3. N1 has one element with properties a and b; N2
has two elements, one with properties a, b, and c and one with
properties b, c, and d; N3 has a single element with properties c
and d. Note that n-way matching consists of binding elements from
distinct inputs and therefore elements from the same input cannot
be bound together. For example, it would be invalid to bind element
2 with element 3 in Figure 1.

Two di�erent approaches to matching the elements are indicated
by do�ed and solid lines. One approach, represented by the do�ed
lines, binds elements 1 with 3, and elements 2 with 4. In that
approach, the elements of each created pair share one property out
of four. �at is, elements 1 and 3 share property b, but not a, c,
and d. A be�er approach is represented by the solid lines, which
bind elements 1 with 2, and elements 3 with 4. In that approach,
the elements of each created pair share two out of three properties;

namely, elements 1 and 2 share properties a and b, but not c. �is
approach is, in fact, an optimal solution for the n-way matching
problem, whose goal is to bind elements that share the largest
number of common properties.

�e game uses human visual cognition to perform visual compar-
isons quickly and e�ciently. Input elements are encoded as an alien.
For example, Figure 2 depicts aliens that represent the elements
in Figure 1. �ese aliens are composed of items that represent the
properties of their corresponding elements. �e le�most alien in
Figure 2 encodes element 1 in Figure 1 by representing property
a with a blue wig and property b with bunny ears. Resultingly,
input elements sharing common properties are represented by vi-
sually similar aliens, and elements that have di�erent properties
are represented by visually di�erent ones.

�e game is played iteratively. It starts from the best known
matching solution produced so far, either by a state-of-the-art
heuristic algorithm or by a previous player. A player is presented
with a target alien for whom they must “�nd friends”. Players may
scroll through the rest of the aliens and select aliens one by one to
add to their created group. If the player manages to form a group
of aliens that is deemed to be an improvement to the matching
solution, the player wins and that solution is stored for the next
iteration of the game. �e player then restarts the game with a new
target alien.

3 RESEARCH QUESTION
Working memory is severely limited in the amount of information
it can hold and in its duration [7, 12]. A direct consequence to this
is that for tasks which are cognitively demanding, we can expect
memory overload to occur and performance to deteriorate.

We can therefore reasonably assume that players will not per-
form at their best when bombarded with visual information. In
spite of this, an opposing hypothesis can also be drawn. Seeing
more visual information exposes players to more of the solution
space, which increases their chances of identifying optimal solu-
tions. With respect to n-way matching, seeing more elements en-
ables players to identify be�er groups of friends. �is is evidenced
by a number of games, in which players still outperform state-of-
the-art approaches despite being presented with more information
[6, 8, 11].

�e following question now remains: do players perform be�er
when given a higher or lower visual load?

4 EXPERIMENT
4.1 Methods
We adapt the work of the authors of [5] to investigate the ques-
tion of whether players perform be�er with a higher or lower
visual load. Our study considers two alternative game layouts for
MATCHMAKERS: one which aims to increase the amount of infor-
mation presented and one which aims to reduce it. Both layouts
are available online [1].

Design L1, shown in Figure 3 (a), maximizes the number of aliens
that can be shown to players. At any given time, about thirty aliens
are presented on the screen (a�empting to �t any more would make
the aliens too small). �e target alien for whom the player must
�nd friends, is shown at the top of the screen. �e aliens encoding
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Figure 3: (a) A snapshot of layout L1; (b) a snapshot of L2; (c) a snapshot of L2 a�er pressing the right arrow button.

the rest of the input elements are laid out below it on a grid. Aliens
of the same group are juxtaposed. (As described in Section 2, aliens
have already been placed into groups prior to each game based
on the best solution produced by a previous player or a heuristic
algorithm.) Group membership is indicated by the alien’s border
color, i.e., the two aliens on the lower right both have pink borders
and therefore come from the same group. Players may scan through
the aliens using the scroll bar on their web browser window, and
select aliens to add to the new group of friends that they are forming
by clicking on them.

�e alternative design L2, shown in Figure 3 (b) and Figure 3 (c),
reduces the information presented. �e aliens are laid out along a
single row. Similar to L1, aliens are juxtaposed with their group
members. But rather than displaying many groups simultaneously,
L2 only displays a single group at a time for the purpose of reducing
visual load.

Each index along the row displays aliens from a single input. �e
order of the inputs are randomized (with the exception of the target
alien’s input, which is always assigned to index 0). For example,
the snapshot of L2 in Figure 3 (b) depicts a case with �ve inputs
used for the game’s tutorial. �e row contains �ve indices, one for
each input. �e target alien is at index 0. Index 1 displays the aliens
from the second input; index 2 displays the aliens from the third
input, and so on. On the screen, a group with two aliens is shown
to the player, one at index 2 and one at index 3. Since the group
does not contain aliens from the second and ��h inputs, index 1
and index 4 are le� blank. Players may browse through all of the
groups using the le� and right arrow bu�ons shown on the screen.
Figure 3 (c) shows the new group that is displayed when clicking
the right arrow bu�on from the game screen in Figure 3 (b). �is
group contains two aliens, one from the second input in index 1 and
one from the fourth input in index 3. �e group does not contain
aliens from the third and ��h input, so index 2 and 4 are le� blank.

In both designs, aliens that are deemed similar to the aliens
in the group created by the player are highlighted with a yellow
background using a heuristic algorithm. �is signi�cantly reduces

the size of the search space, in that players only need to consider
aliens that are highlighted. As another player aid, the red bar placed
below each alien in L1 and to the le� of each alien in L2 indicates the
strength of similarity of the alien with other members of its group.
A full bar means that an alien is very similar, while an empty bar
means that it shares few characteristics with its group members.

4.2 Procedure
Participants were recruited through Facebook and Reddit. �e
highest-scoring players were rewarded with $100 in gi� cards.

To evaluate the two layouts, we launched the game on a real-
world case consisting of eight inputs that encode a system of hos-
pitals reported in [13]. In total, there were 221 elements and 158
properties. Participants were initially randomly assigned to one
layout, but were later permi�ed to play both. In total, thirty-seven
participants took part in the study. Eleven players a�empted L1 and
twenty-six players a�empted L2. Fewer players a�empted L1 due
to a bug that failed to load the game for some of the participants.
�e game was launched for a period of ten hours.

4.3 Results
We used two metrics to measure the layouts against each other. First,
we considered the cumulative score of players, i.e., the improvement
in score made by players to the n-way matching solution (M1). �e
score was measured using the weight function de�ned in [14]. We
also measured the number of successful games normalized by the
number of players, i.e., the total number of wins divided by the
number of players (M2). �e results are shown in Figure 4 and
Figure 5.

Players did be�er on L1 based on both of our metrics. M1 was 886
points for L1 and 490 points for L2, meaning that the players of the
�rst design were able to improve the score of the n-way matching
by 886 points – more than the players of L2 even though there were
many more of them! In addition, M2 was 0.36 for L1 and 0.31 for L2
indicating that there were more individual wins for the �rst design
than the second. Pu�ing the two together, we can conclude that in
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Figure 4: �e cumulative score achieved by players.

Figure 5: �e number of successful games normalized by the
number of players.

our experiment, participants who had more information were more
likely to score a win than those who received less information.

�e results of the study suggest that players bene�t more from a
higher visual load. Players not only achieved a higher cumulative
score in L1 (M1), but they were also more successful in their a�empt
to improve the n-way match solution (M2). L1, which displays many
aliens on the screen and makes it easy to quickly scan through them
all, enables players to look for the best out of all possible aliens to
add to the created group. On the other hand, L2 presents only a
small number of aliens at a time, and thus cannot facilitate such a
strategy. Instead, players likely employ an approach in which they
will add the �rst alien that makes some (but not necessarily the
most) improvement to their group.

5 THREATS AND LIMITATIONS
�e �ndings of the study should be taken with some precaution.
Firstly, it did not consider the performance of individual players,
whether or not the order in which they played the two layouts had
any bearing on performance, nor the amount of time they spent
playing. �e results are also threatened due in part by the study’s
short duration and the small number of players who participated.

While the results suggest that L1 is be�er than L2 for helping
players achieve success, there could still be some bene�ts to L2. For
instance, if L2 is signi�cantly less overwhelming than L1, players
might enjoy playing a game employing L2 more than one employing
L1. �is could prove to be signi�cant in the long run, as it is crucial
to retain an active player base for a game to garner success [17].
L2 can also reach a wider array of players, since presenting a small
number of elements in L2 makes it possible for the game to be
played on mobile devices. In contrast, L1 can only be played on a
large display.

In addition, we did not consider the impact of player aids on
performance. As mentioned in Section 4.1, the bars and highlighting
act as visual cues that substantially reduce the size of the search
space. It would be interesting to explore whether the �ndings will
be similar in the absence of aids.

6 CONCLUSION
Due to the limited capacity and duration of human working mem-
ory, tasks demanding high cognitive load tend to cause poor per-
formance. However, it is not clear whether this holds in human-
computation games, where seeing more visual information can be
advantageous by exposing players to more of the solution space.
To our surprise, the present study seems to support the notion that
more information is of greater bene�t. Still, the results must be
interpreted with some caution due its limitations; further investi-
gation using more players, other problems and a longer duration is
needed to arrive at a more de�nitive conclusion.
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