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Abstract

Many powerful Monte Carlo techniques for estimating partition functions, such
as annealed importance sampling (AIS), are based on sampling from a sequence
of intermediate distributions which interpolate between a tractable initial distribu-
tion and the intractable target distribution. The near-universal practice is to use
geometric averages of the initial and target distributions, but alternative paths can
perform substantially better. We present a novel sequence of intermediate distribu-
tions for exponential families defined by averaging the moments of the initial and
target distributions. We analyze the asymptotic performance of both the geomet-
ric and moment averages paths and derive an asymptotically optimal piecewise
linear schedule. AIS with moment averaging performs well empirically at esti-
mating partition functions of restricted Boltzmann machines (RBMs), which form
the building blocks of many deep learning models.

1 Introduction
Many generative models are defined in terms of an unnormalized probability distribution, and com-
puting the probability of a state requires computing the (usually intractable) partition function. This
is problematic for model selection, since one often wishes to compute the probability assigned to
held-out test data. While partition function estimation is intractable in general, there has been ex-
tensive research on variational [1, 2, 3] and sampling-based [4, 5, 6] approximations. In the context
of model comparison, annealed importance sampling (AIS) [4] is especially widely used because
given enough computing time, it can provide high-accuracy estimates. AIS has enabled precise
quantitative comparisons of powerful generative models in image statistics [7, 8] and deep learning
[9, 10, 11]. Unfortunately, applying AIS in practice can be computationally expensive and require
laborious hand-tuning of annealing schedules. Because of this, many generative models still have
not been quantitatively compared in terms of held-out likelihood.

AIS requires defining a sequence of intermediate distributions which interpolate between a tractable
initial distribution and the intractable target distribution. Typically, one uses geometric averages of
the initial and target distributions. Tantalizingly, [12] derived the optimal paths for some toy mod-
els in the context of path sampling and showed that they vastly outperformed geometric averages.
However, as choosing an optimal path is generally intractable, geometric averages still predominate.

In this paper, we present a theoretical framework for evaluating alternative paths. We propose a novel
path defined by averaging moments of the initial and target distributions. We show that geometric
averages and moment averages optimize different variational objectives, derive an asymptotically
optimal piecewise linear schedule, and analyze the asymptotic performance of both paths. Our
proposed path often outperforms geometric averages at estimating partition functions of restricted
Boltzmann machines (RBMs).
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2 Estimating Partition Functions
Suppose we have a probability distribution pb(x) = fb(x)/Zb defined on a space X , where fb(x)
can be computed efficiently for a given x ∈ X , and we are interested in estimating the partition
function Zb. Annealed importance sampling (AIS) is an algorithm which estimates Zb by gradu-
ally changing, or “annealing,” a distribution. In particular, one must specify a sequence of K + 1
intermediate distributions pk(x) = fk(x)/Zk for k = 0, . . .K, where pa(x) = p0(x) is a tractable
initial distribution, and pb(x) = pK(x) is the intractable target distribution. For simplicity, assume
all distributions are strictly positive on X . For each pk, one must also specify an MCMC transi-
tion operator Tk (e.g. Gibbs sampling) which leaves pk invariant. AIS alternates between MCMC
transitions and importance sampling updates, as shown in Alg 1.

Algorithm 1 Annealed Importance Sampling

for i = 1 to M do
x0 ← sample from p0(x)
w(i) ← Za
for k = 1 to K do
w(i) ← w(i) fk(xk−1)

fk−1(xk−1)

xk ← sample from Tk (x |xk−1)
end for

end for
return Ẑb =

∑M
i=1 w

(i)/M

The output of AIS is an unbiased estimate Ẑb
of Zb. Remarkably, unbiasedness holds even in
the context of non-equilibrium samples along
the chain [4, 13]. However, unless the interme-
diate distributions and transition operators are
carefully chosen, Ẑb may have high variance
and be far from Zb with high probability.

The mathematical formulation of AIS leaves
much flexibility for choosing intermediate dis-
tributions. However, one typically defines a
path γ : [0, 1] → P through some family P
of distributions. The intermediate distributions
pk are chosen to be points along this path corresponding to a schedule 0=β0 < β1 < . . . < βK =1.
One typically uses the geometric path γGA, defined in terms of geometric averages of pa and pb:

pβ(x) = fβ(x)/Z(β) = fa(x)1−βfb(x)β/Z(β). (1)

Commonly, fa is the uniform distribution, and (1) reduces to pβ(x) = fb(x)β/Z(β). This motivates
the term “annealing,” and β resembles an inverse temperature parameter. As in simulated annealing,
the “hotter” distributions often allow faster mixing between modes which are isolated in pb.

AIS is closely related to a broader family of techniques for posterior inference and partition function
estimation, all based on the following identity from statistical physics:

logZb − logZa =

∫ 1

0

Ex∼pβ

[
d

dβ
log fβ(x)

]
dβ. (2)

Thermodynamic integration [14] estimates (2) using numerical quadrature, and path sampling [12]
does so with Monte Carlo integration. The weight update in AIS can be seen as a finite difference
approximation. Tempered transitions [15] is a Metropolis-Hastings proposal operator which heats
up and cools down the distribution, and computes an acceptance ratio by approximating (2).

The choices of a path and a schedule are central to all of these methods. Most work on adapting paths
has focused on tuning schedules along a geometric path [15, 16, 17]. [15] showed that the geometric
schedule was optimal for annealing the scale parameter of a Gaussian, and [16] extended this result
more broadly. The aim of this paper is to propose, analyze, and evaluate a novel alternative to γGA
based on averaging moments of the initial and target distributions.

3 Analyzing AIS Paths
When analyzing AIS, it is common to assume perfect transitions, i.e. that each transition opera-
tor Tk returns an independent and exact sample from the distribution pk [4]. This corresponds to
the (somewhat idealized) situation where the Markov chains mix quickly. As Neal [4] pointed out,
assuming perfect transitions, the Central Limit Theorem shows that the samples w(i) are approx-
imately log-normally distributed. In this case, the variances var(w(i)) and var(logw(i)) are both
monotonically related to E[logw(i)]. Therefore, our analysis focuses on E[logw(i)].

Assuming perfect transitions, the expected log weights are given by:

E[logw(i)] = logZa +

K−1∑
k=0

Epk [log fk+1(x)− log fk(x)] = logZb −
K−1∑
k=0

DKL(pk‖pk+1). (3)
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In other words, each logw(i) can be seen as a biased estimator of logZb, where the bias δ =

logZb − E[logw(i)] is given by the sum of KL divergences
∑K−1
k=0 DKL(pk‖pk+1).

Suppose P is a family of probability distributions parameterized by θ ∈ Θ, and the K + 1 distribu-
tions p0, . . . , pK are chosen to be linearly spaced along a path γ : [0, 1] → P . Let θ(β) represent
the parameters of the distribution γ(β). As K is increased, the bias δ decays like 1/K, and the
asymptotic behavior is determined by a functional F(γ).
Theorem 1. Suppose K + 1 distributions pk are linearly spaced along a path γ. Assuming per-
fect transitions, if θ(β) and the Fisher information matrix Gθ(β) = covx∼pθ (∇θ log pθ(x)) are
continuous and piecewise smooth, then as K →∞ the bias δ behaves as follows:

Kδ = K

K−1∑
k=0

DKL(pk‖pk+1)→ F(γ) ≡ 1

2

∫ 1

0

θ̇(β)TGθ(β)θ̇(β)dβ, (4)

where θ̇(β) represents the derivative of θ with respect to β. [See supplementary material for proof.]

This result reveals a relationship with path sampling, as [12] showed that the variance of the path
sampling estimator is proportional to the same functional. One useful result from their analysis is
a derivation of the optimal schedule along a given path. In particular, the value of F(γ) using the
optimal schedule is given by `(γ)2/2, where ` is the Riemannian path length defined by

`(γ) =

∫ 1

0

√
θ̇(β)TGθ(β)θ̇(β)dβ. (5)

Intuitively, the optimal schedule allocates more distributions to regions where pβ changes quickly.
While [12] derived the optimal paths and schedules for some simple examples, they observed that
this is intractable in most cases and recommended using geometric paths in practice.

The above analysis assumes perfect transitions, which can be unrealistic in practice because many
distributions have separated modes between which mixing is difficult. As Neal [4] observed, in
such cases, AIS can be viewed as having two sources of variance: that caused by variability within
a mode, and that caused by misallocation of samples between modes. The former source of vari-
ance is well modeled by the perfect transitions analysis and can be made small by adding more
intermediate distributions. The latter, however, can persist even with large numbers of intermediate
distributions. While our theoretical analysis assumes perfect transitions, our proposed method often
gave substantial improvement empirically in situations with poor mixing.

4 Moment Averaging
As discussed in Section 2, the typical choice of intermediate distributions for AIS is the geometric
averages path γGA given by (1). In this section, we propose an alternative path for exponential
family models. An exponential family model is defined as

p(x) =
1

Z(η)
h(x) exp

(
ηTg(x)

)
, (6)

where η are the natural parameters and g are the sufficient statistics. Exponential families include a
wide variety of statistical models, including Markov random fields.

In exponential families, geometric averages correspond to averaging the natural parameters:

η(β) = (1− β)η(0) + βη(1). (7)

Exponential families can also be parameterized in terms of their moments s = E[g(x)]. For any
minimal exponential family (i.e. one whose sufficient statistics are linearly independent), there is a
one-to-one mapping between moments and natural parameters [18, p. 64]. We propose an alternative
to γGA called the moment averages path, denoted γMA, and defined by averaging the moments of
the initial and target distributions:

s(β) = (1− β)s(0) + βs(1). (8)

This path exists for any exponential family model, since the set of realizable moments is convex
[18]. It is unique, since g is unique up to affine transformation.
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As an illustrative example, consider a multivariate Gaussian distribution parameterized by the mean
µ and covariance Σ. The moments are E[x] = µ and − 1

2E[xxT ] = − 1
2 (Σ + µµT ). By plugging

these into (8), we find that γMA is given by:

µ(β) = (1− β)µ(0) + βµ(1) (9)

Σ(β) = (1− β)Σ(0) + βΣ(1) + β(1− β)(µ(1)− µ(0))(µ(1)− µ(0))T . (10)

In other words, the means are linearly interpolated, and the covariances are linearly interpolated
and stretched in the direction connecting the two means. Intuitively, this stretching is a useful
property, because it increases the overlap between successive distributions with different means. A
comparison of the two paths is shown in Figure 1.

GA path

MA path

Figure 1: Comparison of
γGA and γMA for multivari-
ate Gaussians: intermediate
distribution for β = 0.5,
and µ(β) for β evenly spaced
from 0 to 1.

Next consider the example of a restricted Boltzmann machine (RBM),
a widely used model in deep learning. A binary RBM is a Markov
random field over binary vectors v (the visible units) and h (the hidden
units), and which has the distribution

p(v,h) ∝ exp
(
aTv + bTh + vTWh

)
. (11)

The parameters of the model are the visible biases a, the hidden biases
b, and the weights W. Since these parameters are also the natural
parameters in the exponential family representation, γGA reduces to
linearly averaging the biases and the weights. The sufficient statistics
of the model are the visible activations v, the hidden activations h, and
the products vhT . Therefore, γMA is defined by:

E[v]β = (1− β)E[v]0 + βE[v]1 (12)
E[h]β = (1− β)E[h]0 + βE[h]1 (13)

E[vhT ]β = (1− β)E[vhT ]0 + βE[vhT ]1 (14)

For many models of interest, including RBMs, it is infeasible to de-
termine γMA exactly, as it requires solving two often intractable prob-
lems: (1) computing the moments of pb, and (2) solving for model

parameters which match the averaged moments s(β). However, much work has been devoted to
practical approximations [19, 20], some of which we use in our experiments with intractable mod-
els. Since it would be infeasible to moment match every βk even approximately, we introduce the
moment averages spline (MAS) path, denoted γMAS . We choose a set ofR values β1, . . . , βR called
knots, and solve for the natural parameters η(βj) to match the moments s(βj) for each knot. We
then interpolate between the knots using geometric averages. The analysis of Section 4.2 shows that,
under the assumption of perfect transitions, using γMAS in place of γMA does not affect the cost
functional F defined in Theorem 1.

4.1 Variational Interpretation

By interpreting γGA and γMA as optimizing different variational objectives, we gain additional
insight into their behavior. For geometric averages, the intermediate distribution γGA(β) minimizes
a weighted sum of KL divergences to the initial and target distributions:

p
(GA)
β = arg min

q
(1− β)DKL(q‖pa) + βDKL(q‖pb). (15)

On the other hand, γMA minimizes the weighted sum of KL divergences in the reverse direction:

p
(MA)
β = arg min

q
(1− β)DKL(pa‖q) + βDKL(pb‖q). (16)

See the supplementary material for the derivations. The objective function (15) is minimized by a
distribution which puts significant mass only in the “intersection” of pa and pb, i.e. those regions
which are likely under both distributions. By contrast, (16) encourages the distribution to be spread
out in order to capture all high probability regions of both pa and pb. This interpretation helps
explain why the intermediate distributions in the Gaussian example of Figure 1 take the shape that
they do. In our experiments, we found that γMA often gave more accurate results than γGA because
the intermediate distributions captured regions of the target distribution which were missed by γGA.
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4.2 Asymptotics under Perfect Transitions

In general, we found that γGA and γMA can look very different. Intriguingly, both paths always
result in the same value of the cost functional F(γ) of Theorem 1 for any exponential family model.
Furthermore, nothing is lost by using the spline approximation γMAS in place of γMA:
Theorem 2. For any exponential family model with natural parameters η and moments s, all three
paths share the same value of the cost functional:

F(γGA) = F(γMA) = F(γMAS) =
1

2
(η(1)− η(0))T (s(1)− s(0)). (17)

Proof. The two parameterizations of exponential families satisfy the relationship Gηη̇ = ṡ [21,
sec. 3.3]. Therefore, F(γ) can be rewritten as 1

2

∫ 1

0
η̇(β)T ṡ(β) dβ. Because γGA and γMA linearly

interpolate the natural parameters and moments respectively,

F(γGA) =
1

2
(η(1)− η(0))T

∫ 1

0

ṡ(β) dβ =
1

2
(η(1)− η(0))T (s(1)− s(0)) (18)

F(γMA) =
1

2
(s(1)− s(0))T

∫ 1

0

η̇(β) dβ =
1

2
(s(1)− s(0))T (η(1)− η(0)). (19)

Finally, to show that F(γMAS) = F(γMA), observe that γMAS uses the geometric path between
each pair of knots γ(βj) and γ(βj+1), while γMA uses the moments path. The above analysis shows
the costs must be equal for each segment, and therefore equal for the entire path.

This analysis shows that all three paths result in the same expected log weights asymptotically,
assuming perfect transitions. There are several caveats, however. First, we have noticed experimen-
tally that γMA often yields substantially more accurate estimates of Zb than γGA even when the
average log weights are comparable. Second, the two paths can have very different mixing prop-
erties, which can strongly affect the results. Third, Theorem 2 assumes linear schedules, and in
principle there is room for improvement if one is allowed to tune the schedule.

For instance, consider annealing between two Gaussians pa = N (µa, σ) and pb = N (µb, σ). The
optimal schedule for γGA is a linear schedule with cost F(γGA) = O(d2), where d = |µb − µa|/σ.
Using a linear schedule, the moment path also has costO(d2), consistent with Theorem 2. However,
most of the cost of the path results from instability near the endpoints, where the variance changes
suddenly. Using an optimal schedule, which allocates more distributions near the endpoints, the cost
functional falls to O((log d)2), which is within a constant factor of the optimal path derived by [12].
(See the supplementary material for the derivations.) In other words, while F(γGA) = F(γMA),
they achieve this value for different reasons: γGA follows an optimal schedule along a bad path,
while γMA follows a bad schedule along a near-optimal path. We speculate that, combined with the
procedure of Section 4.3 for choosing a schedule, moment averages may result in large reductions
in the cost functional for some models.

4.3 Optimal Binned Schedules

In general, it is hard to choose a good schedule for a given path. However, consider the set of binned
schedules, where the path is divided into segments, some number Kj of intermediate distributions
are allocated to each segment, and the distributions are spaced linearly within each segment. Under
the assumption of perfect transitions, there is a simple formula for an asymptotically optimal binned
schedule which requires only the parameters obtained through moment averaging:
Theorem 3. Let γ be any path for an exponential family model defined by a set of knots βj , each with
natural parameters ηj and moments sj , connected by segments of either γGA or γMA paths. Then,
under the assumption of perfect transitions, an asymptotically optimal allocation of intermediate
distributions to segments is given by:

Kj ∝
√

(ηj+1 − ηj)T (sj+1 − sj). (20)

Proof. By Theorem 2, the cost functional for segment j is Fj = 1
2 (ηj+1−ηj)

T (sj+1−sj). Hence,
with Kj distributions allocated to it, it contributes Fj/Kj to the total cost. The values of Kj which
minimize

∑
j Fj/Kj subject to

∑
j Kj = K and Kj ≥ 0 are given by Kj ∝

√
Fj .

5



101 102 103

K

60

50

40

30

20

10

0

10

lo
g
 Z

Gibbs 1 Transitions

GA lin.

MA lin.

101 102 103

K

Perfect Transitions

GA lin.

MA lin.

101 102 103

K

Geometric Path / Gibbs 1

GA lin.

GA bin opt.

101 102 103

K

Moment Path / Gibbs 1

MA lin.

MA bin opt.

Figure 2: Estimates of logZb for a normalized Gaussian as K, the number of intermediate distributions, is
varied. True value: logZb = 0. Error bars show bootstrap 95% confidence intervals. (Best viewed in color.)

5 Experimental Results
In order to compare our proposed path with geometric averages, we ran AIS using each path to es-
timate partition functions of several probability distributions. For all of our experiments, we report
two sets of results. First, we show the estimates of logZ as a function of K, the number of interme-
diate distributions, in order to visualize the amount of computation necessary to obtain reasonable
accuracy. Second, as recommended by [4], we report the effective sample size (ESS) of the weights
for a large K. This statistic roughly measures how many independent samples one obtains using
AIS.1 All results are based on 5,000 independent AIS runs, so the maximum possible ESS is 5,000.

5.1 Annealing Between Two Distant Gaussians

In our first experiment, the initial and target distributions were the two Gaussians shown in Fig. 1,
whose parameters are N

((−10
0

)
,
(

1 −0.85
−0.85 1

))
and N

((
10
0

)
,
(

1 0.85
0.85 1

))
. As both distributions

are normalized, Za = Zb = 1. We compared γGA and γMA both under perfect transitions, and
using the Gibbs transition operator. We also compared linear schedules with the optimal binned
schedules of Section 4.3, using 10 segments evenly spaced from 0 to 1.

Figure 2 shows the estimates of logZb for K ranging from 10 to 1,000. Observe that with 1,000
intermediate distributions, all paths yielded accurate estimates of logZb. However, γMA needed
fewer intermediate distributions to achieve accurate estimates. For example, with K = 25, γMA

resulted in an estimate within one nat of logZb, while the estimate based on γGA was off by 27 nats.

This result may seem surprising in light of Theorem 2, which implies that F(γGA) = F(γMA) for
linear schedules. In fact, the average log weights for γGA and γMA were similar for all values of K,
as the theorem would suggest; e.g., with K = 25, the average was -27.15 for γMA and -28.04 for
γGA. However, because the γMA intermediate distributions were broader, enough samples landed
in high probability regions to yield reasonable estimates of logZb.
5.2 Partition Function Estimation for RBMs

Our next set of experiments focused on restricted Boltzmann machines (RBMs), a building block of
many deep learning models (see Section 4). We considered RBMs trained with three different meth-
ods: contrastive divergence (CD) [19] with one step (CD1), CD with 25 steps (CD25), and persistent
contrastive divergence (PCD) [20]. All of the RBMs were trained on the MNIST handwritten digits
dataset [22], which has long served as a benchmark for deep learning algorithms. We experimented
both with small, tractable RBMs and with full-size, intractable RBMs.

Since it is hard to compute γMA exactly for RBMs, we used the moments spline path γMAS of
Section 4 with the 9 knot locations 0.1, 0.2, . . . , 0.9. We considered the two initial distributions
discussed by [9]: (1) the uniform distribution, equivalent to an RBM where all the weights and
biases are set to 0, and (2) the base rate RBM, where the weights and hidden biases are set to 0, and
the visible biases are set to match the average pixel values over the MNIST training set.

Small, Tractable RBMs: To better understand the behavior of γGA and γMAS , we first evaluated
the paths on RBMs with only 20 hidden units. In this setting, it is feasible to exactly compute the

1The ESS is defined as M/(1+ s2(w
(i)
∗ )) where s2(w(i)

∗ ) is the sample variance of the normalized weights
[4]. In general, one should regard ESS estimates cautiously, as they can give misleading results in cases where
an algorithm completely misses an important mode of the distribution. However, as we report the ESS in cases
where the estimated partition functions are close to the true value (when known) or agree closely with each
other, we believe the statistic is meaningful in our comparisons.
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Figure 3: Estimates of logZb for the tractable PCD(20) RBM as K, the number of intermediate distributions,
is varied. Error bars indicate bootstrap 95% confidence intervals. (Best viewed in color.)

CD1(20) PCD(20)

pa(v) path & schedule logZb log Ẑb ESS logZb log Ẑb ESS

uniform GA linear 279.59 279.60 248 178.06 177.99 204
uniform GA optimal binned 279.51 124 177.92 142
uniform MAS linear 279.59 2686 178.09 289
uniform MAS optimal binned 279.60 2619 178.08 934

Table 1: Comparing estimates of logZb and effective sample size (ESS) for tractable RBMs. Results are shown
for K = 100,000 intermediate distributions, with 5,000 chains and Gibbs transitions. Bolded values indicate
ESS estimates that are not significantly different from the largest value (bootstrap hypothesis test with 1,000
samples at α = 0.05 significance level). The maximum possible ESS is 5,000.

Figure 4: Visible activations for samples from the PCD(500) RBM. (left) base rate RBM, β = 0 (top) geometric
path (bottom) MAS path (right) target RBM, β = 1.

partition function and moments and to generate exact samples by exhaustively summing over all
220 hidden configurations. The moments of the target RBMs were computed exactly, and moment
matching was performed with conjugate gradient using the exact gradients.

The results are shown in Figure 3 and Table 1. Under perfect transitions, γGA and γMAS were both
able to accurately estimate logZb using as few as 100 intermediate distributions. However, using
the Gibbs transition operator, γMAS gave accurate estimates using fewer intermediate distributions
and achieved a higher ESS at K = 100,000. To check that the improved performance didn’t rely on
accurate moments of pb, we repeated the experiment with highly biased moments.2 The differences
in log Ẑb and ESS compared to the exact moments condition were not statistically significant.

Full-size, Intractable RBMs: For intractable RBMs, moment averaging required approximately
solving two intractable problems: moment estimation for the target RBM, and moment matching.
We estimated the moments from 1,000 independent Gibbs chains, using 10,000 Gibbs steps with
1,000 steps of burn-in. The moment averaged RBMs were trained using PCD. (We used 50,000 up-
dates with a fixed learning rate of 0.01 and no momentum.) In addition, we ran a cheap, inaccurate
moment matching scheme (denoted MAS cheap) where visible moments were estimated from the
empirical MNIST base rate and the hidden moments from the conditional distributions of the hidden
units given the MNIST digits. Intermediate RBMs were fit using 1,000 PCD updates and 100 par-
ticles, for a total computational cost far smaller than that of AIS itself. Results of both methods are

2In particular, we computed the biased moments from the conditional distributions of the hidden units given
the MNIST training examples, where each example of digit class i was counted i+ 1 times.
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Figure 5: Estimates of logZb for intractable RBMs. Error bars indicate bootstrap 95% confidence intervals.
(Best viewed in color.)

CD1(500) PCD(500) CD25(500)

pa(v) path log Ẑb ESS log Ẑb ESS log Ẑb ESS

uniform GA linear 341.53 4 417.91 169 451.34 13
uniform MAS linear 359.09 3076 418.27 620 449.22 12
uniform MAS cheap linear 359.09 3773 418.33 5 450.90 30

base rate GA linear 359.10 4924 418.20 159 451.27 2888
base rate MAS linear 359.07 2203 418.26 1460 451.31 304
base rate MAS cheap linear 359.09 2465 418.25 359 451.14 244

Table 2: Comparing estimates of logZb and effective sample size (ESS) for intractable RBMs. Results are
shown for K = 100,000 intermediate distributions, with 5,000 chains and Gibbs transitions. Bolded values
indicate ESS estimates that are not significantly different from the largest value (bootstrap hypothesis test with
1,000 samples at α = 0.05 significance level). The maximum possible ESS is 5,000.

shown in Figure 5 and Table 2. Overall, the MAS results compare favorably with those of GA on
both of our metrics. Performance was comparable under MAS cheap, suggesting that γMAS can be
approximated cheaply and effectively. As with the tractable RBMs, we found that optimal binned
schedules made little difference in performance, so we focus here on linear schedules.

The most serious failure was γGA for CD1(500) with uniform initialization, which underestimated
our best estimates of the log partition function (and hence overestimated held-out likelihood) by
nearly 20 nats. The geometric path from uniform to PCD(500) and the moments path from uni-
form to CD1(500) also resulted in underestimates, though less drastic. The rest of the paths agreed
closely with each other on their partition function estimates, although some methods achieved sub-
stantially higher ESS values on some RBMs. One conclusion is that it’s worth exploring multiple
initializations and paths for a given RBM in order to ensure accurate results.

Figure 4 compares samples along γGA and γMAS for the PCD(500) RBM using the base rate ini-
tialization. For a wide range of β values, the γGA RBMs assigned most of their probability mass
to blank images. As discussed in Section 4.1, γGA prefers configurations which are probable under
both the initial and target distributions. In this case, the hidden activations were closer to uniform
conditioned on a blank image than on a digit, so γGA preferred blank images. By contrast, γMAS

yielded diverse, blurry digits which gradually coalesced into crisper ones.

6 Conclusion

We presented a theoretical analysis of the performance of AIS paths and proposed a novel path
for exponential families based on averaging moments. We gave a variational interpretation of this
path and derived an asymptotically optimal piecewise linear schedule. Moment averages performed
well empirically at estimating partition functions of RBMs. We hope moment averaging can also
improve other path-based sampling algorithms which typically use geometric averages, such as path
sampling [12], parallel tempering [23], and tempered transitions [15].
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