A Kronecker-factored approximate Fisher matrix for convolution layers

Roger Grosse
James Martens

Department of Computer Science, University of Toronto

Abstract

Second-order optimization methods such as nat-
ural gradient descent have the potential to speed
up training of neural networks by correcting for
the curvature of the loss function. Unfortunately,
the exact natural gradient is impractical to com-
pute for large models, and most approximations
either require an expensive iterative procedure
or make crude approximations to the curvature.
We present Kronecker Factors for Convolution
(KFC), a tractable approximation to the Fisher
matrix for convolutional networks based on a
structured probabilistic model for the distribution
over backpropagated derivatives. Similarly to the
recently proposed Kronecker-Factored Approxi-
mate Curvature (K-FAC), each block of the ap-
proximate Fisher matrix decomposes as the Kro-
necker product of small matrices, allowing for ef-
ficient inversion. KFC captures important curva-
ture information while still yielding comparably
efficient updates to stochastic gradient descent
(SGD). We show that the updates are invariant
to commonly used reparameterizations, such as
centering of the activations. In our experiments,
approximate natural gradient descent with KFC
was able to train convolutional networks several
times faster than carefully tuned SGD. Further-
more, it was able to train the networks in 10-20
times fewer iferations than SGD, suggesting its
potential applicability in a distributed setting.

1. Introduction

Despite advances in optimization, most neural networks are
still trained using variants of stochastic gradient descent
(SGD) with momentum. It has been suggested that natu-
ral gradient descent (Amari, 1998) could greatly speed up
optimization because it accounts for the geometry of the
optimization landscape and has desirable invariance prop-
erties. (See Martens (2014) for a review.) Unfortunately,

Proceedings of the 337 International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

RGROSSE @ CS.TORONTO.EDU
JMARTENS @ CS.TORONTO.EDU

computing the exact natural gradient is intractable for large
networks, as it requires solving a large linear system in-
volving the Fisher matrix, whose dimension is the number
of parameters (potentially tens of millions for modern ar-
chitectures). Approximations to the natural gradient typi-
cally either impose very restrictive structure on the Fisher
matrix (e.g. LeCun et al., 1998; Le Roux et al., 2008) or
require expensive iterative procedures to compute each up-
date, analogously to approximate Newton methods (e.g.
Martens, 2010). An ongoing challenge has been to develop
a curvature matrix approximation which reflects enough
structure to yield high-quality updates, while introducing
minimal computational overhead beyond the standard gra-
dient computations.

Much progress in machine learning has been driven by
the development of structured probabilistic models whose
independence structure allows for efficient computations,
yet which still capture important dependencies between the
variables of interest. In our case, since the Fisher ma-
trix is the covariance of the backpropagated log-likelihood
derivatives, we are interested in modeling the distribution
over these derivatives. The model must support efficient
computation of the inverse covariance, as this is what’s
required to compute the natural gradient. Recently, the
Factorized Natural Gradient (FANG) (Grosse & Salakhut-
dinov, 2015) and Kronecker-Factored Approximate Cur-
vature (K-FAC) (Martens & Grosse, 2015) methods ex-
ploited probabilistic models of the derivatives to efficiently
compute approximate natural gradient updates. In its sim-
plest version, K-FAC approximates each layer-wise block
of the Fisher matrix as the Kronecker product of two much
smaller matrices. These (very large) blocks can then be
can be tractably inverted by inverting each of the two fac-
tors. K-FAC was shown to greatly speed up the training of
deep autoencoders. However, its underlying probabilistic
model assumed fully connected networks with no weight
sharing, rendering the method inapplicable to two archi-
tectures which have recently revolutionized many applica-
tions of machine learning — convolutional networks (Le-
Cun et al., 1989; Krizhevsky et al., 2012) and recurrent neu-
ral networks (Hochreiter & Schmidhuber, 1997; Sutskever
etal., 2014).

We introduce Kronecker Factors for Convolution (KFC), an
approximation to the Fisher matrix for convolutional net-

A Kronecker-factored approximate Fisher matrix for convolution layers

works. Most modern convolutional networks have trainable
parameters only in convolutional and fully connected lay-
ers. Standard K-FAC can be applied to the latter; our contri-
bution is a factorization of the Fisher blocks corresponding
to convolution layers. KFC is based on a structured proba-
bilistic model of the backpropagated derivatives where the
activations are independent of the derivatives, the activa-
tions and derivatives are spatially homogeneous, and the
derivatives are spatially uncorrelated. Under these approx-
imations, we show that the Fisher blocks for convolution
layers decompose as a Kronecker product of smaller matri-
ces (analogously to K-FAC), yielding tractable updates.

KFC yields a tractable approximation to the Fisher matrix
of a conv net. It can be used directly to compute approxi-
mate natural gradient descent updates, as we do in our ex-
periments. One could further combine it with the adap-
tive step size, momentum, and damping methods from the
full K-FAC algorithm (Martens & Grosse, 2015). It could
also potentially be used as a pre-conditioner for iterative
second-order methods (Martens, 2010; Vinyals & Povey,
2012; Sohl-Dickstein et al., 2014). We show that the ap-
proximate natural gradient updates are invariant to widely
used reparameterizations of a network, such as whitening
or centering of the activations.

We have evaluated our method on training conv nets on ob-
ject recognition benchmarks. In our experiments, KFC was
able to optimize conv nets several times faster than care-
fully tuned SGD with momentum, in terms of both training
and test error. Furthermore, it required 10-20 times fewer
iterations, suggesting its usefulness in the context of highly
distributed training algorithms.

2. Background

In this section, we outline the K-FAC method as previously
formulated for standard fully-connected feed-forward net-
works without weight sharing (Martens & Grosse, 2015).
Each layer of a fully connected network computes activa-
tions as:

sy = Wyay_, (1
as = ¢u(se), 2
where ¢ € {1,...,L} indexes the layer, s, denotes the

inputs to the layer, a; denotes the activations, W, =
(by W) denotes the matrix of biases and weights, a, =
(1 a])" denotes the activations with a homogeneous di-
mension appended, and ¢, denotes a nonlinear activation
function (usually applied coordinate-wise). (Throughout
this paper, we will use the index O for all homogeneous co-
ordinates.) We will refer to the values s, as pre-activations.
By convention, ag corresponds to the inputs x and az, cor-
responds to the prediction z made by the network. For con-
venience, we concatenate all of the parameters of the net-
work into a vector 8 = (vec(W1)T,...,vec(W)T)T,
where vec denotes the Kronecker vector operator which
stacks the columns of a matrix into a vector. We denote

the function computed by the network as f(x,0) = a,.

Typically, a network is trained to minimize an objective
h(0) given by L(y, f(x,0)) as averaged over the training
set, where L(y,z) is a loss function. The gradient VA of
h(8), which is required by most optimization methods, is
estimated stochastically using mini-batches of training ex-
amples. (We will often drop the explicit 8 subscript when
the meaning is unambiguous.)

For the remainder of this paper, we will assume the net-
work’s prediction f(x,0) determines the value of the pa-
rameter z of a distribution Ry, over y, and the loss func-
tion is the corresponding negative log-likelihood L(y,z) =

—logr(y|z).

2.1. Second-order optimization of neural networks

Second-order optimization methods work by computing a
parameter update v that minimizes (or approximately min-
imizes) a local quadratic approximation to the objective,
given by h(8) = Vgh'v + $vTCv, where C is a ma-
trix which quantifies the curvature of the cost function h
at 8. The exact solution to this minimization problem can
be obtained by solving the linear system Cv = —Vgh.
The original and most well-known example is Newton’s
method, where C is chosen to be the Hessian matrix;
this isn’t appropriate in the non-convex setting because of
the well-known problem that it searches for critical points
rather than local optima (e.g. Pascanu et al., 2014). There-
fore, it is more common to use natural gradient (Amari,
1998) or updates based on the generalized Gauss-Newton
matrix (Schraudolph, 2002), which are guaranteed to pro-
duce descent directions because the curvature matrix C is
positive semidefinite.

Natural gradient descent can be usefully interpreted as
a second-order method (Martens, 2014) where C is the
Fisher information matrix F, as given by

F=E xvpa. [DO(DO)T], A3)

Y~ Ry|f(x,0)

where pgata denotes the training distribution, Ry (x,0)
denotes the model’s predictive distribution, and DO =
VoL(y, f(x,8)) is the log-likelihood gradient. For the re-
mainder of this paper, all expectations are with respect to
this distribution (which we term the model’s distribution),
so we will leave off the subscripts. (In this paper, we will
use the D notation for log-likelihood derivatives; deriva-
tives of other functions will be written out explicitly.) In
the case where Ry, corresponds to an exponential family
model with “natural” parameters given by z, F is equiv-
alent to the generalized Gauss-Newton matrix (Martens,
2014), which is an approximation of the Hessian which has
also seen extensive use in various neural-network optimiza-
tion methods (e.g. Martens, 2010; Vinyals & Povey, 2012).

F is an n X n matrix, where n is the number of param-
eters and can be in the tens of millions for modern deep
architectures. Therefore, it is impractical to represent F

A Kronecker-factored approximate Fisher matrix for convolution layers

explicitly in memory, let alone solve the linear system ex-
actly. There are two general strategies one typically takes
to find a good search direction: either impose a structure on
F enabling fast inversion (e.g. LeCun et al., 1998; Le Roux
et al., 2008; Grosse & Salakhutdinov, 2015), or use an it-
erative procedure to approximately solve the linear system
(e.g. Martens, 2010). These two strategies are not mutu-
ally exclusive: tractable curvature approximations can be
used as preconditioners in second order optimization, and
this has been observed to make a large difference (Martens,
2010; Chapelle & Erhan, 2011; Vinyals & Povey, 2012).

2.2. Kronecker-factored approximate curvature

Kronecker-factored approximate curvature (K-FAC;
Martens & Grosse, 2015) is a recently proposed optimiza-
tion method for neural networks which can be seen as
a hybrid of the two approximation strategies: it uses a
tractable approximation to the Fisher matrix F, but also
uses an optimization strategy which behaves locally like
conjugate gradient. This section gives a conceptual sum-
mary of the aspects of K-FAC relevant to the contributions
of this paper; a precise description of the full algorithm is
given in Appendix B.2.

The block-diagonal version of K-FAC (which is the simpler
of the two versions, and is what we will present here) is
based on two approximations to F' which together make it
tractable to invert. First, weight derivatives in different lay-
ers are assumed to be uncorrelated, which corresponds to F
being block diagonal, with one block per layer. Each block
is given by E[vec(DW,) vec(DW/,)]. This approxima-
tion by itself is insufficient, because each of the blocks may
still be very large. (E.g., if a network has 1,000 units in
each layer, each block would be of size 105 x 10.) For the
second approximation, observe that

E [DIW (]i;D[Wlirjr| = E[Dls¢]i[as1];Dselir[ar1]5] -

If we approximate the activations and pre-
activation derivatives as independent, this can
be decomposed as E [D[W];;D[W];] ~
E [D[s¢];D[s¢]s) E [[a¢—1]j[@¢—1];-]. This can be written
algebraically as a decomposition into a Kronecker product
of two smaller matrices:

E[vec(W,)vec(W) |~ ¥, @ T, 2 F,, (4

where ¥, = E[a,_;a, ,] and T, = E[s;s/] denote
the second moment matrices of the activations and pre-
activation derivatives, respectively. Call the block diagonal
approximate Fisher matrix, with blocks given by Eqn. 4,
F. The two factors are estimated online from the empiri-
cal moments of the model’s distribution using exponential
moving averages.

To invert F, we use the facts that (1) we can invert a block
diagonal matrix by inverting each of the blocks, and (2)
the Kronecker product satisfies the identity (A ® B)~! =

A l@B L

Toler! 0
F!= 5)
0 L el

We do not represent | explicitly, as each of the blocks is
quite large. Instead, we keep track of each of the Kronecker
factors.

The approximate natural gradient F~1Vh can then be com-
puted as follows:

vec (I‘l_l(VV-Vlh)lIlal)

F'Vh = (6)

vec (I‘Zl(VV-VL h)\Ilzil)

We would often like to add a multiple of the identity ma-
trix to F for two reasons. First, many networks are regu-
larized with weight decay, which corresponds to a penalty
of %)\BTO, for some parameter A. Following the interpre-
tation of F as a quadratic approximation to the curvature,
it would be appropriate to use F + AI to approximate the
curvature of the regularized objective. The second reason
is that the local quadratic approximation of h implicitly
used when computing the natural gradient may be inaccu-
rate over the region of interest, owing to the approximation
of F by F, to the approximation of the Hessian by F, and
finally to the error associated with approximating h as lo-
cally quadratic in the first place. A common way to ad-
dress this issue is to damp the updates by adding ~I to the
approximate curvature matrix, for some small value v, be-
fore minimizing the local quadratic model. Therefore, we

1
Vh.

would ideally like to compute |F + (A +~)I

Unfortunately, adding (A 4)I breaks the Kronecker fac-
torization structure. While it is possible to exactly solve the
damped system (see Appendix B.2), it is often preferable to

approximate F + (\ 4 v)I in a way that maintains the fac-
torizaton structure. Martens & Grosse (2015) pointed out
that

- 1
Fi+(A+y)I = (‘I’z71 + e/ A+ WI>® (Fe + E\//\ + ’YI) .
.
We will denote this damped approximation as Ffﬂ) =

\Ilg&@l"f). Mathematically, 7, can be any positive scalar,
but Martens & Grosse (2015) suggest the formula

[1®,_, 1]
T = === (8)
‘ T Ty

where || - || denotes some matrix norm, as this value mini-
mizes the norm of the residual in Eqn. 7. In this work, we
use the trace norm ||B|| = tr B. The approximate natural

A Kronecker-factored approximate Fisher matrix for convolution layers

gradient Vh is then computed as:

vee (IP{] 7 (V)])
Vh 2 [FD)7'Vh = :

vee (IP7) 7 (Ve W@,)
©)

The algorithm as presented by Martens & Grosse (2015)
has many additional elements which are orthogonal to the
contributions of this paper. For concision, a full description
of the algorithm is relegated to Appendix B.2.

2.3. Convolutional networks

Convolutional networks can require somewhat crufty nota-
tion when the computations are written out in full. In our
case, we are interested in computing correlations of deriva-
tives, which compounds the notational difficulties. In this
section, we summarize the notation we use. (Table 1 lists
all convolutional network notation used in this paper.) In
sections which focus on a single layer of the network, we
drop the explicit layer indices.

A convolution layer takes as input a layer of activations
{a;+}, where j € {1,...,J} indexes the input map and
t € T indexes the spatial location. (Here, 7 is the set of
spatial locations, which is typically a 2-D grid. For sim-
plicity, we assume convolution is performed with a stride
of 1 and padding equal to R, so that the set of spatial
locations is shared between the input and output feature
maps.) This layer is parameterized by a set of weights
w; 5,5 and biases b;, where i € {1,..., I} indexes the out-
put map, j indexes the input map, and § € A indexes the
spatial offset (from the center of the filter). If the filters
are of size (2R + 1) x (2R + 1), then we would have
A ={-R,...,R} x{—R,...,R}. We denote the num-
bers of spatial locations and spatial offsets as | 7| and |A|,
respectively. The convolution layer computes a set of pre-
activations {s; ; } as follows:

Sip = Z Wy 5,805,445 + by, (10)
SEA

where b; denotes the bias parameter. The activations are de-
fined to take the value O outside of 7. The pre-activations
are passed through a nonlinearity such as ReLU to compute
the output layer activations, but we have no need to refer
to this explicitly when analyzing a single layer. (For sim-
plicity, we assume operations such as pooling and response
normalization are implemented as separate layers.)

Pre-activation derivatives Ds; ; are computed during back-
propagation. One then computes weight derivatives as:

Dwm,g = Z aj7t+§D3i,t. (1 1)
teT

In some cases, it is useful to introduce vectorized notation
for conv nets. We will represent the activations for a layer

Casa|T|x J matrix A, and the preactivations as a |7| x I
matrix Sy. The weights are represented as a I x|A|.J matrix
W,.

2.3.1. EFFICIENT IMPLEMENTATION AND VECTORIZED
NOTATION

For modern large-scale vision applications, it’s necessary
to implement conv nets efficiently for a GPU (or some other
massively parallel computing architecture). Since one con-
tribution of our own work was to exploit the same under-
lying implementation to efficiently compute the statistics
needed by our algorithm, we outline a typical GPU im-
plementation of a conv net. As a bonus, discussing the
implementation gives us a convenient high-level notation
for analyzing conv nets mathematically. Due to space con-
strants, we relegate this material to Appendix A. This ap-
pendix also contains a table of all conv net notation used in
this paper.

3. Kronecker factorization for convolution
layers

We begin by assuming a block-diagonal approximation to
the Fisher matrix like that of K-FAC, where each block
contains all the parameters relevant to one layer (see Sec-
tion 2.2). (Recall that these blocks are typically too large
to invert exactly, or even represent explicitly, which is why
the further Kronecker approximation is required.) The Kro-
necker factorization from K-FAC applies only to fully con-
nected layers. Convolutional networks introduce several
kinds of layers not found in fully connected feed-forward
networks: convolution, pooling, and response normaliza-
tion. Since pooling and response normalization layers
don’t have trainable weights, they are not included in the
Fisher matrix. However, we must deal with convolution
layers. In this section, we present our main contribution,
an approximate Kronecker factorization for the blocks of F
corresponding to convolution layers. In the tradition of fast
food puns (Ranzato & Hinton, 2010; Yang et al., 2014), we
call our method Kronecker Factors for Convolution (KFC).

For this section, we focus on the Fisher block for a single
layer, so we drop the layer indices. All conv net notation is
summarized in Appendix A.

Recall that the Fisher matrix F = E [D(D0) "] is the

covariance of the log-likelihood gradient under the model’s
distribution. (In this paper, all expectations are with respect
to the model’s distribution unless otherwise specified.) By
plugging in Eqn. 11, the entries corresponding to weight
derivatives are given by:

E[Dwi,j,ﬂ)wi/’j/’y} =E

(Z aj,t+6DSi,t>

teT
<Z aj,,t%,psi,,t/)] (12)
t'eT

To think about the computational complexity of computing

A Kronecker-factored approximate Fisher matrix for convolution layers

the entries directly, consider the second convolution layer
of AlexNet (Krizhevsky et al., 2012), which has 48 input
feature maps, 128 output feature maps, 27 x 27 = 729
spatial locations, and 5 x 5 filters. Since there are 128 x
48 x 5 x 5 = 245760 weights and 128 biases, the full block
would require 2458882 a2 60.5 billion entries to represent
explicitly, and inversion is clearly impractical.

Recall that K-FAC approximation for classical fully con-
nected networks can be derived by approximating activa-
tions and pre-activation derivatives as being statistically in-
dependent (this is the IAD approximation below). Deriving
an analogous Fisher approximation for convolution layers
will require some additional approximations.

Here are the approximations we will make in deriving our
Fisher approximation:

e Independent activations and derivatives (IAD).
The activations are independent of the pre-activation
derivatives, i.e. {a;;} AL {Ds; 4/ }.

e Spatial homogeneity (SH). The first-order statistics
of the activations are independent of spatial location.
The second-order statistics of the activations and pre-
activation derivatives at any two spatial locations ¢ and
t’ depend only on ¢ — ¢. This implies there are func-
tions M,) and I such that:

Elaj] = M(j) (13)
Elaj a; 0] = Q5" —t) (14)
E[Ds; +Dsy /] = T(i,i,t' —t). (15)

Note that E[Ds; ;] = 0 under the model’s distribution,
so Cov (’Dsi’t, DSi/’t/) =E ['DSZ"{DSZ‘/’V}.

e Spatially uncorrelated derivatives (SUD). The pre-
activation derivatives at any two distinct spatial loca-
tions are uncorrelated, i.e. I'(¢,4’,) = 0 for § # 0.

We believe SH is fairly innocuous, as one is implicitly mak-
ing a spatial homogeneity assumption when choosing to
use convolution in the first place. SUD perhaps sounds like
a more severe approximation, but in fact appeared to de-
scribe the model’s distribution quite well in the networks
we investigated; this is analyzed empirially in Section 5.1.

We now show that combining the above three approx-
imations yields a Kronecker factorization of the Fisher
blocks. For simplicity of notation, assume the data are two-
dimensional, so that the offsets can be parameterized with
indices § = (d1,d2) and 6" = (4%, 05), and denote the di-
mensions of the activations map as (77, 7%). The formulas
can be generalized to data dimensions higher than 2 in the
obvious way. For clarity, we leave out the bias parameters
in this section, but these are discussed in Appendix E.

Theorem 1. Combining approximations 1AD, SH, and

SUD yields the following factorization:

E [Dwi,j,épwi’,j/,é’] = 5(65 5/) Q(jmj/a 5/ - 6) F(’L7 7;/7 0)5
(16)

where

B(5,8') £ (T} — max(8y, 5, 0) + min(sy, 5, 0)) -
- (T» — max(da, 85, 0) + min(dz, 65,0)) (17)

Proof. See Appendix E. O

To talk about how this fits in to the block diagonal
approximation to the Fisher matrix F, we now restore
the explicit layer indices and use the vectorized nota-
tion from Section 2.3.1. The above factorization yields
a Kronecker factorization of each block, which will be
useful for computing their inverses (and ultimately our
approximate natural gradient). In particular, if F, ~
E[vec(DW/) vec(DW/) '] denotes the block of the ap-
proximate Fisher for layer ¢, Eqn. 16 yields our KFC factor-
ization of F; into a Kronecker product of smaller factors:

Fi=Q,0T, (18)

where

[I>

[Qe_1]j|al+s, 57|a+6 = B(6,6) Qj, 5, 6" = 9)
[T¢)iir £ T(i,4,0). (19)

(We will derive much simpler formulas for €2,_; and I'; in
the next section.) Using this factorization, the rest of the K-
FAC algorithm can be carried out without modification. For
instance, we can compute the approximate natural gradient

using a damped version of F analogously to Eqns. 7 and 9
of Section 2.2:

FY) =0 or) (20)
= (Qe—1 +7rm//\+71) ®
1
®(Fz+ﬂ—\/z\+v1). (21)
[4
vee (I0{"] ! (Vg IS)
Vh = [FY7'Vh = ;

vee (D)7 (Vi MR,
(22)

Returning to our running example of AlexNet, W, is a
I x (J]A|41) = 128 x 1201 matrix. Therefore the factors
Q1 and 'y are 1201 x 1201 and 128 x 128, respectively.
These matrices are small enough that they can be repre-
sented exactly and inverted in a reasonable amount of time,
allowing us to efficiently compute the approximate natural
gradient direction using Eqn. 22.

A Kronecker-factored approximate Fisher matrix for convolution layers

3.1. Estimating the factors

Since the true covariance statistics are unknown, we esti-
mate them empirically by sampling from the model’s dis-
tribution, similarly to Martens & Grosse (2015). To sam-
ple derivatives from the model’s distribution, we select a
mini-batch, sample the outputs from the model’s predictive
distribution, and backpropagate the derivatives.

We need to estimate the Kronecker factors {€2,};~, and

{T,}}_,. Since these matrices are defined in terms of the
autocovariance functions €2 and I, it would appear natu-
ral to estimate these functions empirically. Unfortunately,
if the empirical autocovariances are plugged into Eqn. 19,
the resulting €2, may not be positive semidefinite. This
is a problem, since negative eigenvalues in the approxi-
mate Fisher could cause the optimization to diverge (a phe-
nomenon we have observed in practice).

Instead, we estimate each €2, directly using the following
fact:

Theorem 2. Under assumption SH,

E [[Adi[Ad]

DS, DS,] . (23)

Qy

1
I''=—E
T [

(The [] notation is defined in Appendix A.)

Proof. See Appendix E. O

We maintain exponential moving averages of the covari-
ance statistics, where the empirical statistics are computed
on each mini-batch using these formulas.

3.2. Using KFC in optimization

So far, we have defined an approximation F™ to the Fisher
matrix F' which can be tractably inverted. This can be used
in any number of ways in the context of optimization, most
simply by using Vh = [F()]~1V} as an approximation to
the natural gradient F~'Vh. Alternatively, we could use it
in the context of the full K-FAC algorithm, or as a precon-
ditioner for iterative second-order methods (Martens, 2010;
Vinyals & Povey, 2012; Sohl-Dickstein et al., 2014).

In our experiments, we explored two particular instantia-
tions of KFC in optimization algorithms. First, in order
to provide as direct a comparison as possible to standard
SGD-based optimization, we used Vh in the context of
a generic approximate natural gradient descent procedure;
this procedure is like SGD, except that Vh is substituted
for the Euclidean gradient. Additionally, we used momen-
tum, update clipping, and parameter averaging — all stan-
dard techniques in the context of stochastic optimization.!

'Our SGD baseline used momentum and parameter averaging
as well. Clipping was not needed for SGD, for reasons explained
in Appendix B.1.

One can also view this as a preconditioned SGD method,
where F(") is used as the preconditioner. Therefore, we re-
fer to this method in our experiments as KFC-pre (to distin-
guish it from the KFC approximation itself). This method
is spelled out in detail in Appendix B.1.

We also explored the use of FO) in the context of the full
K-FAC training procedure (see Appendix B.2). Since this
performed about the same as KFC-pre, we report results
only for KFC-pre.

With the exception of inverting the Kronecker factors, all
of the heavy computation for our methods was performed
on the GPU. We based our implementation on CUDAMat
(Mnih, 2009) and the convolution kernels provided by the
Toronto Deep Learning ConvNet (TDLCN) package (Sri-
vastava, 2015). Full details on our GPU implementation
and other techniques for minimizing computational over-
head are given in Appendix B.3.

4. Theoretical analysis
4.1. Invariance

Natural gradient descent is motivated partly by way of its
invariance to reparameterization: regardless of how the
model is parameterized, the updates are equivalent to the
first order. Approximations to natural gradient don’t satisfy
full invariance to parameterization, but certain approxima-
tions have been shown to be invariant to more limited, but
still fairly broad, classes of transformations (Ollivier, 2015;
Martens & Grosse, 2015). For instance, K-FAC was shown
to be invariant to affine transformations of the activations
(Martens & Grosse, 2015).

For convolutional layers, we cannot expect an algorithm to
be invariant to arbitrary affine transformations of a given
layer’s activations, as such transformations can change the
set of functions which are representable. (Consider for in-
stance, a transformation which permutes the spatial loca-
tions.) However, we show that the KFC updates are in-
variant to homogeneous, pointwise affine transformations
of the activations, both before and after the nonlinearity.
This is perhaps an overly limited statement, as it doesn’t
use the fact that the algorithm accounts for spatial correla-
tions. Howeyver, it still accounts for a broad set of transfor-
mations, such as normalizing activations to be zero mean
and unit variance either before or after the nonlinearity.

To formalize this, recall that a layer’s activations are rep-
resented as a | 7| x J matrix and are computed from that
layer’s pre-activations by way of an elementwise nonlin-
earity, i.e. Ay = ¢¢(S¢). We replace this with an activation
function d)} which additionally computes affine transforma-
tions before and after the nonlinearity. Such transforma-
tions can be represented in matrix form:

Al = ¢l(SI) = ¢(SIU, +1¢))V, +1d/), (24)

where U, and V, are invertible matrices, and ¢, and d,

A Kronecker-factored approximate Fisher matrix for convolution layers

are vectors. For convenience, the inputs to the network can
be treated as an activation function ¢y which takes no ar-
guments. We also assume the final layer outputs are not
transformed, i.e. V;, = I and d;, = 0. KFC is invariant to
this class of transformations:

Theorem 3. Let N be a network with parameter vector 6
and activation functions {¢¢}_. Given activation func-
tions {QS;}ZL:O defined as in Eqn. 24, there exists a param-
eter vector 01 such that a network N't with parameters o'
and activation functions {d)Z }eL:o computes the same func-

tion as N'. The KFC updates on N and N'* are equivalent,
in that the resulting networks compute the same function.

Proof. See Appendix E. O

Invariance to affine transformations also implies approxi-
mate invariance to smooth nonlinear transformations; see
Martens (2014) for further discussion.

4.2. Relationship with other algorithms

It is possible to interpret many other neural net optimiza-
tion methods as structured probabilistic approximations to
natural gradient. This includes coordinatewise rescaling
methods (e.g. LeCun et al., 1998; Duchi et al., 2011; Tiele-
man & Hinton, 2012; Zeiler, 2013; Kingma & Ba, 2015),
centering of activations (Cho et al., 2013; Vatanen et al.,
2013; Ioffe & Szegedy, 2015, e.g.), and the recently pro-
posed Projected Natural Gradient (Desjardins et al., 2015).
This allows us to compare the modeling assumptions im-
plicitly made by different methods. See Appendix C for a
full discussion.

5. Experiments

We have evaluated our method on two standard image
recognition benchmark datasets: CIFAR-10 (Krizhevsky,
2009), and Street View Housing Numbers (SVHN; Netzer
et al., 2011). Our aim is not to achieve state-of-the-art per-
formance, but to evaluate KFC’s ability to optimize previ-
ously published architectures. We first examine the proba-
bilistic assumptions, and then present optimization results.

For CIFAR-10, we wused the architecture from
cuda-convnet? which achieved 18% error in 20
minutes. This network consists of three convolution layers
and a fully connected layer. (While cuda-convnet
provides some better-performing architectures, we could
not use these, since these included locally connected
layers, which KFC can’t handle.) For SVHN, we used
the architecture of Srivastava (2013). This architecture
consists of three convolutional layers followed by three
fully connected layers, and uses dropout for regularization.
Both of these architectures were carefully tuned for their
respective tasks. Furthermore, the TDLCN CUDA kernels

https://code.google.com/p/cuda-convnet/

we used were carefully tuned at a low level to implement
SGD updates efficiently for both of these architectures.
Therefore, we believe our SGD baseline is quite strong.

5.