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Abstract
Second-order optimization methods, such as nat-
ural gradient, are difficult to apply to high-
dimensional problems, because they require ap-
proximately solving large linear systems. We
present FActorized Natural Gradient (FANG), an
approximation to natural gradient descent where
the Fisher matrix is approximated with a Gaus-
sian graphical model whose precision matrix can
be computed efficiently. We analyze the Fisher
matrix for a small RBM and derive an extremely
sparse graphical model which is a good match
to the covariance of the sufficient statistics. Our
experiments indicate that FANG allows RBMs
to be trained more efficiently compared with
stochastic gradient descent. Additionally, our
analysis yields insight into the surprisingly good
performance of the “centering trick” for training
RBMs.

1. Introduction
In the field of deep learning, stochastic gradient descent
(SGD) has been the optimization workhorse in the large-
data setting (Bottou & Bousquet, 2007). While it often
works well in practice, it has been observed that deep net-
works suffer from severe curvature problems, and this ob-
servation has motivated work on second-order optimiza-
tion methods (Martens, 2010; Martens & Sutskever, 2012).
Second-order methods such as Newton-Rhapson and nat-
ural gradient (Amari, 1998) attenuate these problems by
solving a linear system related to the curvature of the loss
function. Unfortunately, the requirement of constructing
and solving a large linear system makes the exact versions
of these algorithms impractical for large models.

Various approximations have been proposed which avoid
the cost of matrix inversion. The AdaGrad method (Duchi
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et al., 2011) typically assumes a diagonal approximation
to the matrix, as diagonal matrices can be easily inverted.
TONGA (Le Roux et al., 2008) is an approximation to
natural gradient which assumes block diagonal structure,
and low rank structure within each block. While these
methods have the virtue that the curvature statistics can
be estimated online, the approximation may be inaccurate.
Hessian-free (H-F) optimization (Martens, 2010) uses an
iterative method to approximately solve the linear system
with a series of implicit matrix-vector products (Schrau-
dolph, 2002). H-F accounts for the curvature more accu-
rately than diagonal methods, but requires an expensive it-
erative procedure for each update and only uses curvature
information associated with a single mini-batch.

Ideally, we would like an approximation to the curvature
which can be estimated online, is cheap to invert, and cap-
tures the important interactions between different model
parameters. In Section 4, we propose FActorized Natu-
ral Gradient (FANG), an approximation to natural gradient
descent where the Fisher matrix G is approximated with a
Gaussian graphical model over the sufficient statistics. By
empirically analyzing the structure of G for a binary re-
stricted Boltzmann machine (RBM; Smolensky, 1986), we
derive an extremely sparse graphical model structure which
is nonetheless a good fit to G. We show how the approxi-
mate covariance can be efficiently inverted to compute the
approximate natural gradient, as well as how the graphical
model parameters can be efficiently estimated from data.
In Section 5, we provide an alternative interpretation of
FANG as an approximate whitening transformation, and
use this interpretation to explain the surprising effective-
ness of the recently discovered “centering trick” for train-
ing RBMs (Cho et al., 2011; Montavon & Muller, 2012),
which has not previously been connected to natural gradi-
ent. In Section 6, we show that FANG outperforms SGD,
both with and without the centering trick, for training bi-
nary RBMs. While we focus on RBMs, FANG should give
a recipe more generally for designing second-order opti-
mization methods which account for model structure.
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2. Background
2.1. Learning in MRFs

While our work focuses on RBMs, we first introduce the
more general setting of exponential families because our
proposed methods can be described more cleanly in this
setting. An exponential family is a family of distributions
which satisfy the following form:

p(x) =
1

Z(η)
h(x) exp

(
ηTg(x)

)
, (1)

where η denotes the vector of natural parameters, g de-
notes the sufficient statistics of the distribution, and Z is
the (often intractable) partition function. The representa-
tion in terms of natural parameters and sufficient statistics
is unique up to affine transformation. Examples of expo-
nential families include many commonly used distributions
(e.g. Gaussians and multinomials) as well as Markov ran-
dom field (MRF) models (Wainwright & Jordan, 2008).

Restricted Boltzmann machines (RBMs; Smolensky, 1986)
are a type of MRF with a bipartite structure over two sets
of variables: the visible units v (which are typically ob-
served) and hidden units h (which are typically latent). For
simplicity, we assume all of the units are binary-valued,
but RBMs can be defined with other exponential families
(Welling et al., 2004). In the binary case, the model distri-
bution is given by:

p(v,h) =
1

Z
exp

(
aTv + bTh + vTWh

)
, (2)

where the parameters are the visible biases a, the hidden
biases b, and the weights W. This can be fit into the ex-
ponential family formalism using η = (a,b, vec(W)) and
g(v,h) = (v,h, vec(vhT )), where vec stacks the columns
of a matrix into a vector.

Conceptually, one can fit exponential family models to data
using maximum likelihood. The log-likelihood gradient
has a particularly simple form:

∇η` = Edata[g(x)]− Emodel[g(x)], (3)

where Edata denotes expectations with respect to the data
conditional distribution p(h |v), and Emodel denotes ex-
pectations with respect to the model distribution. We refer
to the model statistics s = E[g(x)] as the moments of the
model.

In the case of RBMs, the data conditional moments can be
computed exactly because the data conditional distribution
factorizes. However, computing the model moments is in-
tractable because it is equivalent to marginalization, a prob-
lem which is #P-hard in the worst case. While much work
has been devoted to accurately approximating the model
moments, in this paper we use persistent contrastive diver-
gence (PCD; Tieleman, 2008), the most commonly used

procedure for training RBMs in a generative setting. In
PCD, one approximates the model moments using a set of
approximate samples called fantasy particles. After each
SGD update, the particles are updated with one or more
Gibbs steps in order to move them closer to the true model
distribution.

2.2. Natural gradient

Natural gradient descent1 (Amari, 1998) is a second-order
optimization method for training statistical models. The
update rule is given by

η ← η + αG−1∇η`, (4)

where G is the matrix representation of a Riemannian met-
ric, most commonly the Fisher metric. For exponential
families, the Fisher metric is given by:

G = Ep(x)

[
∇η`(∇η`)

T
]

= Covp(x)(g). (5)

Natural gradient descent with the Fisher metric is also
known as Fisher scoring. One justification for the Fisher
metric is that it is the second-order Taylor approximation to
KL divergence; natural gradient descent can be interpreted
as steepest descent in this metric. To a first order approxi-
mation, the update is invariant to reparameterization of the
model. By contrast, standard SGD is steepest descent in
the Euclidean norm, which results in different directions
depending how the model is parameterized.

In maximum likelihood learning for fully observed expo-
nential family models with natural parameterization, the
Fisher matrix is the negative Hessian of the log-likelihood,
so natural gradient is equivalent to Newton’s method. This
equivalence does not hold in our setting since RBMs have
hidden variables, but it still provides a heuristic motivation
for the algorithm.

Natural gradient is difficult to apply to high-dimensional
models, since G is aD×D matrix, whereD is the number
of parameters; therefore, it is impractical even to compute
G explicitly, much less to solve the linear system of Eqn 4
exactly. For instance, a typical binary RBM trained on
MNIST may have 784 visible units and 500 hidden units,
so G would have more than (784× 500)2 entries. Various
approximations have been proposed. TONGA (Le Roux
et al., 2008) is as an approximation to NG which combines
low-rank and block diagonal structure. Metric-free natu-
ral gradient (Desjardins et al., 2013), an approximation in-
spired by Hessian-free optimization (Martens, 2010), uses
conjugate gradient combined with implicit computation of
matrix-vector products involving G. Kronecker-factored
approximate curvature (Martens & Grosse, 2015) is a re-
cent method, similar in spirit to our own, which uses a
different tractable approximation to the Fisher matrix for
training feed-forward neural nets.

1When referring to descent methods, we follow the machine
learning convention of minimizing the negative log-likelihood.
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2.3. Sparse approximate inverses

There are several methods for approximately solving large
linear systems Ax = b which are similar in spirit to our
own. The incomplete Cholesky factorization (Meijerink &
van der Vorst, 1977; Benzi, 2002) computes an approxi-
mate factorization A ≈ LLT where the lower triangular
factor L shares the sparsity structure of A. The linear sys-
tem is then approximately solved using backsubstitution.
As we discuss in Section 5, FANG can be viewed as an ap-
proximate Cholesky factorization of A−1 (rather than A).
The method of sparse approximate inverses (Benzi et al.,
1995; Benzi, 2002) attempts to find sparse matrices M and
N such that MN ≈ A−1; FANG can be viewed as finding
a factorization of this form (see Section 5). Both methods
are used as preconditioners in conjugate gradient.

Neither method applies to our setting, since they both re-
quire the matrix A to be sparse. The Fisher matrix G is
typically dense, and we don’t believe it can be accurately
approximated with a sparse matrix. Instead, FANG fits a
sparse approximate factorization of G−1 directly without
ever computing G as an intermediate step.

3. Notation
For the remainder of this paper, we focus on binary RBMs.
We denote the natural parameters as η = (a,b, vec(W)),
the sufficient statistics as g = (v,h, vec(vhT )), the mo-
ments as s = E[g], and the Fisher matrix as G. The visible
activations, hidden activations, and pairwise statistics will
be denoted vi, hj , and mij = vihj , respectively.

Unfortunately, referring to vectors whose dimensions cor-
respond to both unary and pairwise statistics leads to some
awkward notation. We maintain the following indexing
conventions: i always indexes the visible units, j always
indexes the hidden units, and a is an “abstract index” for
a sufficient statistic (and may refer to either a unary or
pairwise statistic). In some contexts, we will specify that
a = (i, j) references a particular pairwise statistic over
units i and j.

We will sometimes need to refer to particular blocks of a
matrix G whose rows and columns correspond to sufficient
statistics. In this case, G(i,j),(i,j) will denote the 2 × 2
block for unary statistics i and j, while Ga,a will denote
the single entry for the pairwise statistic a = (i, j).

4. Factorized Natural Gradient
In this section, we motivate and present our pro-
posed method, FActorized Natural Gradient (FANG). This
method is based on approximating the Fisher matrix G =
Cov(g) as the covariance matrix for a sparse Gaussian
graphical model over the sufficient statistics g. As a ref-
erence point, observe that a diagonal approximation to G
implicitly assumes that all of the sufficient statistics are in-

dependent, or equivalently, it assumes a fully disconnected
graph structure (Figure 1). At the opposite extreme, exact
natural gradient models G as a general covariance matrix,
which corresponds to a fully connected graph. Ideally, we
would like a compromise: a sparse graph structure which
nonetheless captures the important interactions between the
sufficient statistics.

4.1. Analyzing G for a small RBM

To motivate our graphical model approximation, we first
analyze G for a small RBM where it can be computed ex-
actly, in order to determine which interactions are impor-
tant to model.

Many computations, such as marginalization and parti-
tion function computation, can be performed exactly on an
RBM with only 20 hidden units (Salakhutdinov & Murray,
2008) by exhaustively summing over all 220 hidden config-
urations. This approach works for computing G as well. In
particular, G = E[ggT ]− E[g]E[g]T , where

E[g] =
∑
h

p(h)E[g |h] (6)

E[ggT ] =
∑
h

p(h)
(
E[g |h]E[g |h]T +Cov[g |h]

)
. (7)

All of the conditional expectations and covariances can be
computed efficiently because the conditional distribution
factorizes over v. In this section, we analyze G for a binary
RBM with 20 hidden units and 196 visible units, trained
on a subsampled version of the MNIST handwritten digit
dataset (LeCun et al., 1998) using PCD. The matrix G is of
size 4136× 4136.

We analyze the eigendecomposition of G. The eigenvalue
spectrum and a visualization of the top eigenvector are
shown in Figure 2. From the eigenspectrum, we see that
there are about 10 particularly large eigenvalues, and many
moderate-sized eigenvalues. To interpret the eigenvectors,
we use the identity ds = Gdη (Amari & Nagaoka, 2000).
(Intuitively, G relates small changes in the two exponential
family parameterizations.) This implies that the eigenvec-
tors are the values of dη which satisfy ds = λdη for some
λ. Viewing the eigenvectors in the space of moments rather
than in the space of natural parameters allows us to separate
out two different effects. In particular,

dE[vhT ] = dE[v]E[h]T + E[v]dE[h]T + d Cov(v,h).
(8)

The final term is the interesting one for representation
learning, because changing the correlations corresponds to
changing what a given hidden unit represents. The first two
terms are less interesting because they simply correspond
to shifting the average activations. We quantify the extent
to which each eigenvector is explained in terms of changing
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Figure 1. Graphical models for different approximations to the Fisher matrix. Left: diagonal approximation. Middle: centering trick
(Section 5.1). Right: FANG.

Figure 2. Visualization of the eigendecomposition of G for a
small MNIST RBM. Left top: Eigenspectrum of G. Left bot-
tom: Fraction of each eigenvector explainable in terms of changes
to the correlations. (See Section 4.1 for details.) Right: dW
component of the top eigenvector, which appears to capture the
difference between 0’s and 1’s.

correlations with

f(ds) =
‖d Cov(v,h)‖2

‖d Cov(v,h)‖2 + ‖dE[v]E[h]T + E[v]dE[h]T ‖2
.

(9)

Figure 2 shows f for each of the eigenvectors. For the first
100 eigenvectors, most of the change is explained in terms
of changes to the average activations, rather than to the cor-
relations. Figure 2 shows a visualization of the top eigen-
vector, which appears to reflect the difference between 0’s
and 1’s. The first 30 eigenvectors are all qualitatively simi-
lar to this one.

To summarize, the largest eigenvectors of G (and hence
the directions of highest curvature) correspond to changes
to the unary statistics, rather than changes to the covari-
ances. This is problematic from the standpoint of optimiza-
tion, since the most interesting structure (the covariances)
is buried in the smaller eigenvalues. This suggests that it is
essential to accurately model the dependence between the
unary statistics, as well as the way in which the pairwise
statistics depend on the unary ones.

4.2. Gaussian graphical model

As argued in the preceding section, an accurate model must
capture the covariance of the unary statistics, as well as

model the manner in which the pairwise statistics depend
on the unary ones. We now attempt to model this struc-
ture by approximating G as a Gaussian graphical model.
In particular, consider the graphical model structure of
Figure 1(c), which includes a fully connected clique over
unary statistics vi and hj , as well as linear dependence of
each pairwise statistic mij = vihj on the corresponding
unary statistics. This corresponds to a factorization of the
joint distribution as

p(g) = p(v,h)

Nv∏
i=1

Nh∏
j=1

p(mij | vi, hj). (10)

As a heuristic motivation for this factorization structure,
observe that if the variables in the graphical model were bi-
nary, this would represent the joint distribution exactly. In
particular, the fully connected clique over (v,h) could rep-
resent the RBM’s joint distribution, and eachmij is a deter-
ministic function of its parents. The approximation comes
from modeling the joint distribution as Gaussian. Each of
the CPDs for the pairwise variables is a regression model;
while it can’t represent the conditional distribution exactly,
one hopes it might still be a reasonable proxy.

Specifying a Gaussian graphical model with this structure
requires specifying:

• The mean vector µ = E[g]

• The covariance matrix Σun = E[gungT
un] correspond-

ing to the fully connected clique over unary statistics

• The conditional probability distributions for the pair-
wise potentials mij . This takes the form of a linear-
Gaussian model,

p(mij | vi, hj) ∝ exp

(
− 1

2σ2
ij

(mij − αvi − βhj − γ)2
)
,

which requires specifying the coefficients α and β,
the offset γ, and the conditional variance σ2

ij .

The graphical model defines a covariance matrix Gfac

which approximates the Fisher matrix G. However, the
graphical model structure reflects itself in the inverse co-
variance matrix, or precision matrix, Λ = G−1fac. In partic-
ular, each entry Λab is zero unless a and b are part of the
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same clique. There are (Nv +Nh)2 nonzero entries for the
clique over unary statistics, plus an additional 5 nonzero
entries for each of the NvNh CPDs p(mij | vi, hj). There-
fore, the total number of nonzero entries is O(N2

v + N2
h),

which is linear in the number of weights as long as Nv ≈
Nh. This is in contrast with the unstructured Fisher ma-
trix G, which has O(N2

vN
2
h) nonzero entries — quadratic

in the number of weights! For instance, in a typical sized
RBM with 784 visible units and 500 hidden units, G−1fac has
only 3.6 million nonzero entries, compared with nearly 154
billion for G or G−1.

Computing the approximate natural gradient r = G−1fac∇η`
requires only computing a sparse matrix-vector product, so
the running time is linear in the number of nonzero entries.
Rather than computing G−1fac explicitly, it is more conve-
nient to represent it implicitly in terms of the parameters
of the graphical model. The resulting update is shown in
Algorithm 1.

Algorithm 1 Factorized Natural Gradient (FANG) for bi-
nary RBMs

while stopping criterion not satisfied do
Take a step of persistent contrastive divergence (PCD)
g(s) ← Sufficient statistics from the sth PCD particle
∇η`← log-likelihood gradient as estimated by PCD

{Update weights and biases}
r← 0
run ← Λun [∇η`]un
for each abstract index a = (i, j) do

ri,j,a ← ri,j,a +
1
σ2
ij

(
−βa
1

)
(−βTa , 1) [∇η`]i,j,a

end for
η ← η + αr

{Update mean and covariance statistics}
µ← (1− 1

τ
)µ+ 1

τ
1
K

∑K
s=1 g(s)

for each pair of indices a, b such that Σab is needed to fit
G−1

fac do
Sab ← (1− 1

τ
)Sab +

1
τ

1
K

∑K
s=1 g

(s)
a g

(s)
b

Σab ← Sab − µaµb
end for

if it has been long enough since the last update then
{Update graphical model parameters}
Λun ← Σ−1

un

for each visible index i and hidden index j, and corre-
sponding pairwise index a = (i, j) do
βa ← Σ−1

(i,j),(i,j)Σ(i,j),a

σ2
ij ← Σa,a −Σa,(i,j)Σ

−1
(i,j),(i,j)Σ(i,j),a

end for
end if

end while

4.3. Fitting the graphical model parameters

It remains to describe how to fit the parameters of the
graphical model, which are summarized in Section 4.2.
Maximum likelihood estimates of the mean vector µ and

covariance matrix over unary statistics Σun can each be
derived from the empirical first and second moments of the
relevant variables.

The remaining parameters correspond to the directed
edges. In general, maximum likelihood estimation for di-
rected Gaussian graphical models reduces to independent
linear regression problems, one for each CPD. In our case,
this means there areNv×Nh independent regression prob-
lems, each one predictingmij as a linear function of its two
parents vi and hj . In order to solve these regression prob-
lems, we need only the covariance matrices Σ(i,j,a),(i,j,a)

over a pairwise statistic and its two parents. (The notation
Σ(i,j,a),(i,j,a) refers to the 3 × 3 block whose indices are
the visible index i, the hidden index j, and the abstract in-
dex a = (i, j).) Given this matrix, we can determine the
regression weights βa and conditional variance σ2

ij using
the linear regression formula

βa = Σ−1(i,j),(i,j)Σ(i,j),a (11)

σ2
ij = Σa,a −Σa,(i,j)Σ

−1
(i,j),(i,j)Σ(i,j),a. (12)

Note that the offset parameter γ is not used in the
FANG update, so we do not bother to compute it.

We estimate all of the empirical statistics in an online fash-
ion from the PCD particles (which are hopefully a good
proxy for the model distribution), using an exponentially
decaying average with timescale τ = 100. As a form of
smoothing, we add λI to all of the estimated covariance
matrices, with λ = 0.01 fixed throughout all our experi-
ments.

There are two components to the running time for fitting the
graphical model. First, we need to estimate the statistics.
Updating Σun requiresK(Nv+Nh)2 operations (whereK
is the number of PCD particles). Updating the NvNh co-
variance matrices for the pairwise CPDs requires 9KNvNh

operations. Each of these costs is comparable to the cost of
computing the SGD update itself.

The other significant cost is computing the graphical model
parameters. Estimating the CPD parameters requires solv-
ing NvNh regression problems in 2 variables, so it is an
O(NvNh) operation. Inverting the covariance matrix Σun

requires O(Nv +Nh)3 operations, which makes it asymp-
totically the most expensive operation required for FANG.
Fortunately, the graphical model parameters do not need to
be updated in every iteration, since G is unlikely to change
very quickly during training. In our experiments, we re-
estimated the graphical model parameters once every 100
mini-batches.

While Algorithm 1 is presented in terms of for-loops for
clarity, all of the steps of the algorithm can be vectorized.
Our implementation made use of the CUDAMat (Mnih,
2009) and Gnumpy (Tieleman, 2010) libraries for GPU lin-
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ear algebra operations.2

5. Interpreting FANG as approximate
whitening

In this section, we develop an alternative view of FANG as
an approximate whitening transformation. This interpreta-
tion yields additional insights into the algorithm which are
not apparent from the graphical model formulation. Impor-
tantly, it yields a novel interpretation of the centering trick
of Cho et al. (2011) and Montavon & Muller (2012) as an
approximation to natural gradient.

For notational convenience, we number the coordinates of
all vectors and matrices in decreasing order, e.g.

g = (gD, gD−1, · · · , g1)
T
.

To motivate the use of linear reparameterizations, observe
that the choice of sufficient statistics and natural parame-
ters for an exponential family is unique only up to affine
transformation. In particular, any invertible linear transfor-
mation g 7→ Ag and η 7→ A−Tη results in an equiva-
lent model. When computing gradient descent updates, it
may be advantageous to choose a transformation A which
decorrelates different statistics.

In particular, for each statistic ga, choose a set of parent
statistics Pa(a) ⊂ {1, . . . , a − 1}. Consider the whiten-
ing transform which subtracts from each statistic the com-
ponent which is linearly predictable from its parents, and
normalizes the result to unit variance:

ḡa = ga −
∑

b∈Pa(a)

βa,bgb (13)

g̃a = ḡa/
√

Var(ḡa), (14)

where {βa,b}b∈Pa(a) denote the optimal linear regression
weights for predicting ga as a function of its parents. These
two steps can be written as g̃ = D1/2LTg, where

L =


1

−βD,D−1 1
...

. . .
−βD,1 −βD−1,1 · · · 1

 (15)

D = diag (1/Var(ḡD), . . . , 1/Var(ḡ1)) , (16)

and we define βa,b = 0 for b /∈ Pa(a).

We now show that exact natural gradient corresponds to
the special case where Pa(a) = {1, . . . , a − 1}. In this
case, LDLT is the Cholesky factorization of G−1, and the

2Because we were not aware of an existing GPU routine to
solve many independent linear systems, the βa parameters were
computed on the CPU. In principle, however, this step ought to be
highly parallelizable.

transformation exactly whitens the sufficient statistics. The
natural gradient descent update is equivalent to the SGD
update in the whitened space.
Theorem 1. If Pa(a) = {1, . . . , a − 1} for all a, then
Cov(g̃) = I and G−1 = LDLT . Natural gradient de-
scent is equivalent to (Euclidean) gradient descent on the
whitened parameters η̃ = D1/2LTη.

Proof. Since each ḡa corresponds to the residuals in regres-
sion from g1, . . . , ga−1, ḡa must be uncorrelated with any
linear combination of g1, . . . , ga−1. In particular, ḡb for
b < a is such a linear combination, so all of the statistics
ḡa are therefore uncorrelated. The next step renormalizes
these statistics to unit variance. Therefore, Cov(g̃) = I.

Now, since g = L−TD−1/2g̃,

G = Cov(g) = L−TD−1/2 Cov(g̃)D−1/2L−1

= L−TD−1/2D−1/2L−1

= (LDLT )−1.

Therefore G−1 = LDLT .

Performing gradient descent on transformed parameters
η̃ = Aη is equivalent to updating η ← η + αATA∇η`.
Plugging in A = D1/2LT shows that natural gradient is
equivalent to gradient descent in the whitened space.

We now show that FANG is equivalent to the approxi-
mate whitening transformation where Pa(a) is chosen to
be the set of parents of node a in the graphical model.3

Eqn 13 computes the same optimal regression weights for
each statistic as Eqn 11. The variances in Eqn 14 are the
same as the conditional variance parameters computed by
Eqn 12. The factorization Gfac = LDLT corresponds to
the Cholesky factorization of the precision matrix of a di-
rected Gaussian graphical model (Pourahmadi, 1999).

5.1. Explaining the centering trick

It has been observed that standard SGD training of RBMs is
not invariant even to seemingly innocuous transformations
of the data, such as inverting the pixel values (Cho et al.,
2011). E.g., SGD performs far worse at learning a gener-
ative model of MNIST when 0 is used as the foreground
value and 1 as the background value, compared with the
standard case where 1 is the foreground value.

Several researchers independently discovered an update
rule for training RBMs and DBMs, known as the enhanced
gradient (Cho et al., 2011; 2013), or centering trick (Mon-
tavon & Muller, 2012), which improves the stability of
SGD and is invariant to inverting pixel values. The idea

3In order to draw this equivalence, we must convert the hybrid
graphical model into a fully directed one by assigning an arbitrary
ordering to the unary statistics. The parent set for each unary
statistic consists of all previous unary statistics.
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is to center each of the units at zero by subtracting its em-
pirical mean: ṽ = v − µv and h̃ = h − µh. The model
distribution is given in terms of the centered activations by

p(v,h) ∝ exp
(
ãT ṽ + b̃T h̃ + ṽTW̃h̃

)
, (17)

where the centered parameters are given by ã = a+Wµh,
b̃ = b + WTµv, and W̃ = W. The centering trick up-
dates the (non-centered) model parameters in a way which
is equivalent to performing SGD on the centered parame-
ters.

Montavon & Muller (2012) used the centering trick to train
deep Boltzmann machines without a pre-training step, and
Desjardins et al. (2013) found that it was critical to achiev-
ing good performance with metric-free natural gradient.
Additionally, Montavon & Muller (2012) observed empiri-
cally that the trick improves the conditioning of the curva-
ture matrix for some simple MRFs. However, the reason
for the benefit appears to be poorly understood.

In our framework, the centering trick can be viewed as an
approximation to natural gradient. In particular, the trans-
formed RBM is an exponential family with the sufficient
statistics:

ṽ = v − µv (18)

h̃ = h− µh (19)

ṽh̃T = vhT − vµT
h − µvhT + µvµ

T
h . (20)

The terms µv, µh, and µvµ
T
h can be dropped since they

are constant offsets and therefore do not affect the SGD
update. This is a linear transformation of the original suf-
ficient statistics, which can be written in the form Eqn 13
by setting βa,i = µhj and βa,j = µvi for each abstract
index a = (i, j), and setting all other weights to zero.
Therefore, the centering trick can be viewed as an ap-
proximate whitening transformation where Pa(a) = {i, j},
Pa(i) = {}, and Pa(j) = {} for visible indices i, hidden
indices j, and abstract indices a = (i, j). The correspond-
ing graphical model is shown in Figure 1.

In general, the values of βa,b defined above are not the opti-
mal regression weights. However, if we are given two inde-
pendent random variables v and h, the optimal regression
weights for predictingm = vh as a linear function of v and
h are E[h] and E[v], respectively. Therefore, the centering
trick can be viewed as an approximation to FANG where
the visible and hidden units are assumed to be independent.
This would be a reasonable approximation to the extent
that any individual visible unit is only weakly correlated
with any individual hidden unit. (Note that the assump-
tion that vi and hj are independent is far more benign than
the assumption made by the diagonal approximation to G,
namely that all pairs of sufficient statistics are uncorrelated,
including vi and mij .)

D(p‖q) # parameters
spherical 6469.8 1
diagonal 2290.4 4,136

block diagonal 2006.9 409,366
rank 50 4954.3 206,801

rank 200 3623.5 827,201
random connectivity 2243.3 35,196

centering 801.9 4,352
FANG 548.1 35,196

Table 1. Accuracy of various approximations to G, evaluated in
terms of the KL divergence D(p‖q), where p is a zero-centered
Gaussian with covariance G, and q is a zero-centered Gaussian
with the approximate covariance. See Section 6.1 for details.

6. Experiments
In this section, we first evaluate FANG by comparing the
accuracy of the approximation Gfac with various generic
approximations to PSD matrices. Next, we evaluate its
ability to train binary restricted Boltzmann machines as
generative models, compared with SGD, both with and
without the centering trick.

6.1. Accuracy of approximation

We first compare various approximations to G in terms
of the KL divergence D(p‖q), where p is a zero-centered
Gaussian with covariance G, and q is a zero-centered Gaus-
sian with the approximate covariance. This comparison is
done using the small RBM from Section 4.1. The KL di-
vergence doesn’t necessarily reflect the optimization per-
formance, but is meant to give a rough measure of the ac-
curacy of the approximations. Table 1 shows a comparison
of our factorized approximation with diagonal, block di-
agonal and low-rank-plus-identity approximations of vari-
ous sizes. The block diagonal approximation contains one
block for each hidden unit, similarly to TONGA (Le Roux
et al., 2008). FANG achieves far lower KL divergence than
these alternatives, despite requiring far fewer parameters
than the block diagonal or low rank approximations. We
also include the graphical model corresponding to the cen-
tering trick (Section 5.1). Interestingly, the centering trick
yields a more accurate approximation to G than the generic
approximations, with fewer parameters, even though it was
never intended as an approximation to natural gradient.
As a control, we include a graphical model equivalent to
FANG, but where each pairwise statistic has two random
unary statistics as parents; this control is a very poor ap-
proximation, suggesting that the particular pattern of edges
is important.

6.2. RBM training

Our RBM training experiments were conducted on two
datasets: the MNIST handwritten digit dataset, which has
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Figure 3. Comparison of standard SGD, the centering trick, and FANG for training RBMs as generative models. All three methods use
PCD to estimate the log-likelihood gradient. Left: Log-probabilities of all three methods on the MNIST test set, as a function of running
time. (Training set performance is roughly the same.) Middle: Omniglot training set. Right: Omniglot test set.

long served as a benchmark for representation learning
algorithms (LeCun et al., 1998), and the more complex
Omniglot dataset of handwritten characters in a variety
of world languages (Lake et al., 2013). We compared
FANG against SGD, both with and without the centering
trick. All three methods used PCD to estimate the log-
likelihood gradient.4

Accurately evaluating the test log-likelihood of an RBM is
difficult because it requires the intractable partition func-
tion (Salakhutdinov & Murray, 2008). Similarly to prior
work, we used annealed importance sampling (AIS; Neal,
2001) to estimate the partition function. Our annealing
schedule used geometric averages with 50,000 distributions
spaced linearly from 0 to 1. We computed 95% confi-
dence intervals using the bootstrap, similarly to Burda et al.
(2014).

Estimating RBM log-probabilities is notoriously tricky,
since AIS can sometimes dramatically overestimate the
log-likelihood (Grosse et al., 2013; Burda et al., 2014).
To counter this problem, we re-estimated the final log-
likelihoods using two alternative methods. First, we used
AIS with moment averages (Grosse et al., 2013), which has
been shown to yield more accurate estimates (at a larger
computational cost). Second, we used the Reverse AIS Es-
timator (RAISE; Burda et al., 2014), a recently proposed
estimator which errs on the side of underestimating, rather
than overestimating, the log-probabilities. In all cases, all
estimates agreed to within 0.5 nats, suggesting that the
original AIS estimates are reliable.

Figure 3 shows the training and test log-likelihoods as a

4Details: Each of these datasets consists of pixel values be-
tween 0 and 1, and we followed the standard practice of using the
continuous values during training (Hinton, 2010) and Bernoulli
samples for evaluation (Salakhutdinov & Murray, 2008). The
original Omniglot dataset consisted of 48 × 48 images, but
we rescaled them to 28 × 28. We used 2000 PCD parti-
cles, mini-batches of size 2000, and a learning rate schedule of
α
√
γ/(γ + t), where t is the update count, γ = 1000, and α was

tuned separately for each algorithm.

function of time. On the MNIST dataset, all three methods
eventually reached a test log-likelihood of -84.6 nats, which
is the state-of-the-art for RBMs. However, FANG ap-
proached this log-likelihood value much faster than SGD;
for instance, it exceeded -85 nats after 27 minutes, com-
pared with 1.5 hours for SGD with centering and 6.9 hours
for SGD without centering. On the Omniglot dataset,
FANG achieved a higher training log-likelihood than either
version of SGD. However, as often happens with second-
order optimization, the model overfit, and the test log-
likelihoods were no higher than those obtained with cen-
tering. Despite this effect, both FANG and centering sig-
nificantly outperformed plain SGD even on the test set.

7. Discussion
We have presented FANG, a second-order optimization
algorithm which exploits the structure of the covariance
over sufficient statistics. By approximating the covariance
with a Gaussian graphical model, we obtain a compact ap-
proximation whose inverse can be efficiently computed.
FANG performs well on training binary RBMs, and it helps
explain the good performance of the centering trick. While
our focus was on binary RBMs, this work suggests a recipe
for constructing second-order optimization algorithms by
investigating the structure of the curvature matrix.

We note that other second-order optimization methods be-
sides natural gradient also require inverting covariance ma-
trices. AdaGrad (Duchi et al., 2011) is typically used with
a diagonal approximation to the covariance. Riemannian
manifold Hamiltonian Monte Carlo (Girolami & Calder-
head, 2011) is an MCMC analogue of natural gradient.
The same structure exploited by FANG could potentially
be used in conjunction with these other methods as well.
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