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Abstract

The intrinsic image decomposition aims to retrieve “in-
trinsic” properties of an image, such as shading and re-
flectance. To make it possible to quantitatively compare
different approaches to this problem in realistic settings,
we present a ground-truth dataset of intrinsic image de-
compositions for a variety of real-world objects. For each
object, we separate an image of it into three components:
Lambertian shading, reflectance, and specularities. We use
our dataset to quantitatively compare several existing algo-
rithms; we hope that this dataset will serve as a means for
evaluating future work on intrinsic images.

1. Introduction
The observed color at any point on an object is influ-

enced by many factors, including the shape and material of
the object, the positions and colors of the light sources, and
the position of the viewer. Barrow and Tenenbaum [1] pro-
posed representing distinct scene properties as separate “in-
trinsic” images. We focus on one particular case: the sepa-
ration of an image into illumination, reflectance, and specu-
lar components. The illumination component accounts for
shading effects, including shading due to geometry, shad-
ows and interreflections. The reflectance component, or
albedo, represents how the material of the object reflects
light independent of viewpoint and illumination. Finally,
the specular component accounts for highlights that are due
to viewpoint, geometry and illumination. All together, this
decomposition is expressed as

I(x) = S(x)R(x) + C(x) , (1)

where I(x) is the observed intensity at pixel x, S(x) is the
illumination, R(x) is the albedo, and C(x) is the specular
term.

Such a decomposition could be advantageous for cer-
tain computer vision algorithms. For instance, shape-from-
shading algorithms could benefit from an image with only

shading effects, while image segmentation would be easier
in a world without cast shadows. However, estimating this
decomposition is a fundamentally ill-posed problem: for
every observed value there are multiple unknowns. There
has been progress on this decomposition both on a single
image and from image sequences [16, 15, 12]. Researchers
have shown promising results on their own sets of images;
what has been missing from work thus far is detailed com-
parisons to other approaches and quantitative evaluation.

One reason for this shortcoming is the lack of a common
dataset for intrinsic images. Other computer vision prob-
lems, such as object recognition and stereo, have common
datasets for evaluation and comparison [4, 11], and the ci-
tation count for these works is anecdotal evidence that the
existence of such datasets has contributed to progress on
these problems.

In this work, we provide a ground-truth dataset for intrin-
sic images. This dataset will facilitate future evaluation and
comparison of intrinsic image decomposition algorithms.
Using this dataset, we evaluate and compare several existing
methods.

2. Previous Work

Vision scientists have long been interested in under-
standing how humans separate illumination and reflectance.
Working in a Mondrian (i.e., piecewise constant) world,
Land and McCann proposed the Retinex theory [8], which
showed that albedos could be separated from illumination
if the illumination was assumed to vary slowly. Under
Retinex, small gradients are assumed to correspond to il-
lumination and large gradients are assumed to correspond
to reflectance. In later work, Horn showed how to recover
the albedo image using these assumptions [7].

While Retinex works well in a Mondrian world, the
assumptions it makes do not hold for all real-world im-
ages. Later work has focused on methods for classify-
ing edges as illumination or reflectance according to dif-
ferent heuristics. Sinha and Adelson considered a world of
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painted polyhedra and searched for globally consistent la-
belings of edges or edge junctions as caused by shape or
reflectance changes [13]. Bell and Freeman and also Tap-
pen et al. used machine learning to interpret image gradients
from local cues [2, 15]. Later, Tappen et al. demonstrated
promising results using a non-linear regression based on lo-
cal, low-dimensional estimators [14]. More recently, Shen
et al. showed that Retinex-based algorithms can be im-
proved by assuming similar textures correspond to similar
reflectances [12].

In some scenarios, multiple images of the same scene
under different illumination conditions are available. Weiss
showed that, in this case, the reflectance image can be es-
timated from the set of images by assuming a random (and
sparse) distribution of shading derivatives [16].

As far as establishing ground-truth for intrinsic images,
Tappen et al. created small sets of both computer-generated
and real intrinsic images. The computer-generated images
consisted of shaded ellipsoids with piecewise-constant re-
flectance [15]. The real images were created using green
marker on crumpled paper [14]. Beyond this, we know of
no other attempts to establish ground truth for intrinsic im-
ages.

3. Methods
Our main contribution is a dataset of images of real ob-

jects decomposed into Lambertian shading, Lambertian re-
flectance, and specularities according to Eqn. (1). The spec-
ular term accounts for light rays that reflect directly off the
surface, creating visible highlights in the image. The dif-
fuse term corresponds to Lambertian reflectance, represent-
ing light rays that enter the surface, reflect and refract, and
leave at arbitrary angles. In addition, we assume that the
diffuse term can be further decomposed into shading and
reflectance terms, where the shading term is the image that
would occur if a uniform-reflectance version of the object
was in the same illumination conditions. These assump-
tions constrain the types of effects that can occur in the three
component images of Eqn. (1) and suggest a workflow for
obtaining these images.

Note that most intrinsic image work is only interested
in recovering relative shading and reflectance of a given
scene. In other words, the red, green, and blue channels
of an algorithm’s estimated reflectance (shading) image are
each allowed to be any scalar multiple of the true reflectance
(shading). Therefore, we provide only relative shading and
reflectance. All visualizations in this paper assume white
light (i.e. a grayscale shading image), but this does not mat-
ter for the algorithms or results.

We begin by separating the diffuse and specular compo-
nents. We use a cross-polarization approach where a po-
larizing filter is placed over both the light and camera [10].
With this approach, the light rays that reflect off the surface

of an object to form highlights remain polarized. Therefore,
the highlights can be removed by placing a polarizing filter
on the camera and rotating it until its axis is orthogonal to
the axis of the reflected light. We position a small chrome
sphere in the scene to gauge the appropriate position of the
camera’s polarizing filter. With the filter in the position that
removes highlights, we capture a diffuse image of the ob-
ject.

3.1. Separating shading and reflectance

We have developed two different methods for separat-
ing the diffuse component into shading and reflectance.
The first method begins with an object that has existing re-
flectance variation. In this case, we remove the albedo vari-
ation by painting the object with a thin coat of flat spray-
paint and re-photographing it under the same illumination.
The second method is appropriate for objects that begin
with a uniform color, such as unglazed ceramics and pa-
per. For these objects, we apply colored paint or marker and
re-photograph them under the same illumination. In both
methods, with the polarizing filter set to remove speculari-
ties, we obtain a diffuse image of the object with reflectance
variation (Ilamb) and another without reflectance variation
(Iuni). Additionally, with the filter set to maximize spec-
ularities, we capture another photograph of the object with
reflectance variation (Iorig). Examples illustrating this pro-
cess are shown in Figure 1.

Because we are interested in relative, rather than abso-
lute, shading and reflectance, we may use Iuni as the shad-
ing image. In principle, the terms in Eqn. (1) can be com-
puted as follows:

S = Iuni , (2)
R = Ilamb/Iuni , (3)
C = (Iorig − Ilamb)/2 . (4)

In practice, when using a single light direction, the ratio
in (3) can be unstable in shadowed regions. Therefore, we
instead capture an additional pair of diffuse images I ′lamb

and I ′uni with a different lighting direction and compute

R = (Ilamb + I ′lamb)/(Iuni + I ′uni). (5)

3.2. Alignment

In order to do pixelwise arithmetic on our images, the
images must be accurately aligned. Alignment is particu-
larly challenging for the objects that require spraypainting,
as the objects must be removed from the scene to be painted
and then replaced in their exact positions.1

To re-position objects with high accuracy, we attach the
objects to a solid platform and rest the platform on a mount

1Spraypainting the objects in place could result in paint on the ground
plane and would affect the ambient illumination near the object.



(a) original (Iorig) (b) diffuse (Ilamb) (c) shading (S) (d) reflectance (R) (e) specular (C)

Figure 1. Capturing ground-truth intrinsic images. (a) We capture a complete image Iorig using a polarizing filter set to maximize spec-
ularities and (b) a diffuse image Ilamb with the filter set to remove specularities. (c) We paint the object to obtain the shading image S.
From these images, we can estimate (d) the reflectance image R and (e) specularity image C. The images shown here were captured using
a linear camera and have been contrast-adjusted to improve visibility.

created by a set of four spheres, as in Fig. 2. To create the
mount, we affix three spheres to the ground plane so that
they all touch. A fourth sphere can rest in the recess be-
tween the three spheres. We duplicate this mount in several
locations across the ground plane and affix the platform to
the fourth sphere in each mount. Using this system, we find
that we can remove and replace objects in the scene with no
noticeable shift between images.

Although there is no object motion, there is the possi-
bility of camera motion. We have found that a traditional
polarizing filter, attached to the end of the lens, can cause
several pixels of shift between images when rotated. Our
polarizing filter is therefore attached to a harness placed in
front of the lens (on a separate tripod) so that it can be ro-
tated without touching the camera.

For accidental camera motion, we redo the experiment
if the motion is larger than 1 pixel, or manually align the
images when the motion is smaller than 1 pixel. To trans-
late an image without loss of resolution, we exploit the shift
property of the Fourier transform: a translation in space can
be applied by multiplying the Fourier transform of the im-
age with a complex sinusoid with linearly varying phase.
There is no loss of frequency resolution since the magni-
tudes of the Fourier transform are not modified. We avoid
wrap-around artifacts by cropping the images.

3.3. Interreflections

By defining the reflectance image as in (3), we assume
the illumination at each point is constant between these two
images, and the only difference is the albedo. However, the
illumination itself changes as a result of light interreflected
between different objects and/or different parts of the same
object. We have minimized indirect illumination by cover-
ing the ground plane and all nearby walls with black paper.
We have also removed objects from the dataset that have
large artifacts due to interreflections.

Ground

Platform

Figure 2. System for accurately re-positioning objects. Three
spheres are affixed to the ground plane so that they all touch. A
fourth sphere is attached to a platform that supports the object be-
ing photographed. The position of the platform is constrained by
placing the fourth sphere in the recess between the three bottom
spheres. The platform is supported by multiple sets of spheres in
this arrangement.

3.4. Multiple lighting conditions

Some algorithms for estimating intrinsic images, such
as [16], require a sequence of photographs of the same scene
with many illumination conditions. In addition to the two
fixed light positions, we captured diffuse images with ten
more light positions using a handheld lamp with a polariz-
ing filter. For each position of the light, the polarizing filter
on the camera was adjusted to minimize the specularity on
a chrome sphere placed in the scene.

4. Experiments
In this section, we quantitatively compare several exist-

ing approaches to estimating intrinsic images. We first com-
pare algorithms which use only single grayscale images,
and then look at how much can be gained by using addi-
tional sources of information, such as color or additional
images of the same scene with different lighting conditions.



Figure 3. The full set of objects in our dataset, contrast-adjusted to improve visibility.

In this section, we will use I , S and R to denote
the image and Lambertian shading and reflectance images,
respectively. R(x, y, c) denotes the reflectance value at
pixel (x, y) and color channel c, and R(x, y) denotes the
grayscale reflectance value 1/3

∑
c R(x, y, c). All images

will be grayscale unless otherwise noted. Lowercase r, s,
and i indicate log images, e.g., r = log R. The subscripts x
and y, e.g., ix or iy , indicate horizontal and vertical image
gradients.

4.1. Inputs and Outputs

Most intrinsic image algorithms assume a Lambertian
shading model. In order that the ground truth be well-
defined, we provide the algorithms with the diffuse image
as input. We make this simplification only for evaluation
purposes; in practice the algorithms still behave reasonably
when given images containing specularities.

Because our images contain only a single direct light
source, the shading at each pixel can be represented as a
scalar S(x, y). Therefore, the grayscale image decomposes
as a product of shading and reflectance:

I(x, y) = S(x, y)R(x, y). (6)

The algorithms are all evaluated on their ability to recover
the shading/reflectance decomposition of the grayscale im-
age, although some algorithms will use additional informa-
tion to do so.

4.2. Error metric

Quantitatively comparing different algorithms requires
choosing a meaningful error metric. Some authors have
used mean squared error (MSE), but we found that this met-
ric is too strict for most algorithms on our data. Incorrectly
classifying a single edge can often ruin the relative shad-
ing and reflectance for different parts of the image, and this
often dominates the error scores. To address this problem,
we define a more lenient error criterion called local mean
squared error (LMSE).

Since the ground truth is only defined up to a scale factor,
we define the scale-invariant MSE for a true vector x and the

estimate x̂:
MSE(x, x̂) = ‖x− α̂x̂‖2, (7)

with α̂ = arg minα ‖x − αx̂‖2. We would like each lo-
cal region of our estimated intrinsic images to look like the
ground truth. Therefore, given the true and estimated shad-
ing images S and Ŝ, we define local MSE (LMSE) as the
MSE summed over all local windows w of size k × k and
spaced in steps of k/2:

LMSEk(S, Ŝ) =
∑

w∈W

MSE(Sw, Ŝw). (8)

Our score for the image is the average of the LMSE scores
of the shading and reflectance images, normalized so that an
estimate of all zeros has the maximum possible score of 1:

1
2

LMSEk(S, Ŝ)
LMSEk(S, 0)

+
1
2

LMSEk(R, R̂)
LMSEk(R, 0)

. (9)

Larger values of the window size k emphasize coarse-
grained information while smaller values emphasize fine-
grained information. All the results in this paper use k =
20, but we have found that the results are about the same
even for much larger or smaller windows. We have found
that this error criterion closely corresponds to our own judg-
ments of the quality of the decomposition.

4.3. Algorithms

The evaluated algorithms assign interpretations to image
gradients. To compare the algorithms, we used a uniform
procedure for estimating the intrinsic images based on the
algorithms’ decisions:

1. Compute the horizontal and vertical gradients, ix and
iy , of the log (grayscale) input image.

2. Interpret these gradients by estimating the gradients r̂x

and r̂y of the log reflectance image.

3. Compute the log reflectance image r̂ which matches
these gradients as closely as possible:

r̂ = arg min
r

∑
x,y

|rx(x, y)− r̂x(x, y)|p +

|ry(x, y)− r̂y(x, y)|p. (10)



Except where otherwise stated, we use a least-squares
penalty p = 2 for reconstructing the image. This requires
solving a Poisson equation on a 2-D grid. Since we ignore
the background of the image, r̂x and r̂y are only estimated
for the pixels on the object itself. We use the PyAMG pack-
age to compute the optimum log reflectance image r̂. We
have also experimented with the robust loss function p = 1.

All implementations of the algorithms we test share steps
1 and 3; they differ in how they estimate the log reflectance
derivatives in step 2. This way, we know that any differ-
ences are due to their ability to interpret the gradients, and
not to their reconstruction algorithm. We now discuss par-
ticular algorithms.

4.3.1 Retinex

Printed materials tend to have sharp reflectance edges, while
shadows and smooth surface curvature tend to produce soft
shading edges. The Retinex algorithm (GR-RET), origi-
nally proposed by [8] and extended to two dimensions by
[7, 3], takes advantage of this property by thresholding log-
image gradients. In a grayscale image, large gradients are
classified as reflectance, while small ones are classified as
shading. For the horizontal gradient, this heuristic is defined
as:

r̂x =

{
ix if |ix| > T ,
0 otherwise .

(11)

The same is done for the vertical gradient.
Extensions of Retinex which use color have met with

much success in removing shadows from outdoor scenes. In
particular, [5, 6] take advantage of the fact that most outdoor
illumination changes lie in a two-dimensional subspace of
log-RGB space. Their algorithms for identifying shadow
edges are based on thresholding the projections of the log-
image gradients into this subspace and the projections into
the space perpendicular to it.

In our own dataset, because images contain only a sin-
gle direct light source, all of the illumination changes lie in
the span of the vector (1, 1, 1)T , which is called the bright-
ness subspace. The chromaticity space is the null space of
that vector. Let ibr and ichr be the projections of the log
color image into these two subspaces, respectively. The
color Retinex algorithm2 uses two separate thresholds, one
for brightness changes and one for color changes. More
formally, The horizontal gradient of the log reflectance is
estimated as

r̂x =

{
ibr
x if ‖ibr

x ‖ > T br or ‖ichr
x ‖ > T chr ,

0 otherwise .
(12)

2What we present is only loosely based on the original Retinex algo-
rithm [8], which solved for each color channel independently.

where T br and T chr are independent thresholds that are
chosen using cross-validation. The estimate for the verti-
cal gradient has a similar form.

4.3.2 Learning approaches

Tappen et al. proposed a learning-based approach to esti-
mating intrinsic images [15]. Using AdaBoost, they train a
classifier to predict whether a given gradient is caused by
shading or reflectance. The classifier outputs are pooled
spatially using a Markov Random Field model which en-
courages gradients to have the same classification if they
are likely to lie on the same contour. Inference is performed
using loopy belief propagation and the likelihood scores are
thresholded to produce the final output. We will abbreviate
this algorithm (TAP-05).

More recently, the local regression approach of [14] sup-
poses the shading gradients can be predicted as a locally lin-
ear function of local image patches. Their algorithm, called
ExpertBoost, efficiently summarizes the training data using
a small number of prototype patches, making it possible to
efficiently approximate local regression. (Their full system
also includes a method for weighting the local estimates by
confidence, but we used the unweighted version in our ex-
periments.) We abbreviate this algorithm (TAP-06). We
trained both of these algorithms on our dataset using two-
fold cross-validation with a random split.

4.3.3 Weiss’s multi-image algorithm

With multiple photographs of the same scene with differ-
ent lighting conditions, it becomes easier to factor out the
shading. In particular, cast shadows tend to move across
the scene, so any particular location is unlikely to contain
shadow edges in more than one or two images. Weiss [16]
took advantage of this using a simple decision rule: as-
sume the log-reflectance derivative is the median of the log-
intensity derivatives over all of the images.

While Weiss’s algorithm is good for eliminating shad-
ows, it leaves some shading residue in the reflectance image
if there is a top-down bias in the light directions. However,
note that shading due to surface normals tends to be smooth.
This suggests the following heuristic: first run Weiss’s algo-
rithm, and then run Retinex on the resulting reflectance im-
age. This heuristic has been used by [9] as part of a video
surveillance system. We abbreviate Weiss’s algorithm (W)
and the combined algorithm (W+RET).

4.4. Results

4.4.1 Quantitative comparisons

To quantitatively compare the different algorithms, we com-
puted two statistics. First, we averaged each algorithm’s
LMSE scores, with all images weighted equally. Second,



(a) Mean local MSE (b) Mean rank

Figure 4. Quantitative comparison of all of the algorithms. (a) mean local MSE, as described in Section 4.2 (b) mean rank

we ranked all of the algorithms on each image and aver-
aged the ranks. Both of these measures give approximately
the same results. The results of all algorithms are shown in
Figure 4.

The baseline (BAS) assumes each image is entirely shad-
ing or entirely reflectance, and this binary choice is made
using cross-validation.

Surprisingly, Retinex performed better than TAP-05 and
almost as well as TAP-06. This is surprising, because both
algorithms include Retinex as a special case. We believe
this is because, in a dataset with as much variety as ours,
it is very difficult to separate shading and reflectance using
only local grayscale information, so there is little advantage
to using a better algorithm. Also, TAP-05 tends to overfit
the training data. Finally, we note that, because Retinex has
only a single threshold parameter, it can be more directly
tuned to our evaluation metric using cross-validation.

As we would expect, color retinex (COL-RET) and
Weiss’s algorithm (W), which have access to additional
information, greatly outperform all of the grayscale algo-
rithms. Also, combining Retinex with Weiss’s algorithm
further improves performance by eliminating much of the
shading residue from the reflectance image.

4.4.2 Examples

To understand the relative performance of the different al-
gorithms, it is instructive to consider some particular exam-
ples. Our dataset can be roughly divided into three cate-
gories: artificially painted surfaces, printed objects, and toy
animals. Figure 5 shows the algorithms’ outputs for an in-
stance of each category.

The left-hand column shows a ceramic raccoon which
we drew on with marker. This is a relatively easy image, be-
cause the retinex assumption is roughly satisfied, i.e. most
sharp gradients are due to reflectance changes. Grayscale

retinex correctly identifies most of the markings as re-
flectance changes. However, it leaves some “ghost” mark-
ings in the shading image because pixel interpolation causes
sharp edges to contain a mixture of large and small image
gradients. TAP-05 eliminates many of these ghosts, be-
cause it uses information over a larger scale. Color retinex
dramatically improves on the grayscale algorithms (as we
would expect, because we used colored markers). However,
all of these algorithms leave at least some residue of the cast
shadows in the reflectance image. Weiss’s algorithm, which
has access to multiple lighting conditions, completely elim-
inates the cast shadows. However, it leaves some residual
shading in the reflectance image, because of the top-down
bias in the light direction. Combining Weiss’s algorithm
and Retinex eliminates most of this shading residue, giving
a near-perfect decomposition.

The toy turtle is one of the most difficult objects in our
dataset, because shading and reflectance changes are inter-
mixed. All of the single-image algorithms do very poorly
on this image because it is hard to estimate the decomposi-
tion using local information. Only Weiss’s algorithm, which
can use multiple lighting conditions to disambiguate shad-
ing and reflectance, achieves a good reconstruction. This
result is typical of the toy animal images, which are all very
difficult for single-image algorithms.

4.4.3 Quadratic vs. L1 reconstruction

As described in Section 4.3, all of the algorithms we con-
sider share a common step, where they attempt to recover a
reflectance image consistent with constraints on the gradi-
ents. If no image is exactly consistent, the decomposition
will depend on the cost function applied to violated con-
straints. All of the results described above used the least
squares penalty, but we also tested all of the algorithms us-
ing the robust L1 cost function.



(a) (b)

Figure 6. An example of the reflectance estimates produced by the
color retinex algorithm using different cost functions for recon-
struction. (a) L2 (LMSE = 0.012) (b) L1 (LMSE = 0.006). Note
that using L1 eliminates the halo effect, improving results both
qualitatively and quantitatively.

The L1 penalty slightly improves results on most im-
ages. One example where L1 provided significant benefit
is shown in Figure 6. The least-squares solution contains
many “halos” around some of the edges, and these are elim-
inated using L1. In general, we have found that L1 gives
significant improvement over L2 when the estimated con-
straints are far from satisfiable, when the image consists
of scattered markings on an otherwise constant-reflectance
surface, and when the least-squares solution is already close
to the correct decomposition. Otherwise, L1 gives only a
subtle improvement. For instance, Weiss’s algorithm typi-
cally returns constraints which can be satisfied almost ex-
actly, so least squares and L1 return the same solution.

5. Conclusion

We have created a ground-truth dataset of intrinsic im-
age decompositions of 16 real objects. These decompo-
sitions were obtained using polarization techniques and
various paints, as well as a sphere-based system for pre-
cisely repositioning objects. We have made available our
complete set of ground-truth data, along with the ex-
perimental code, at http://people.csail.mit.edu/

rgrosse/intrinsic to encourage progress on the intrin-
sic images problem.

Using this dataset, we have evaluated several existing in-
trinsic image algorithms, assessing the relative merits of dif-
ferent single-image grayscale algorithms, as well as quan-
tifying how much can be gained from additional sources of
information. We found that, in a dataset as varied as ours, it
is very hard to interpret image gradients using purely local
grayscale cues. On the other hand, color is a very useful
cue, as is a set of images of the same scene with different
lighting conditions. We hope that the ability to train and
evaluate on our dataset will spur further progress on intrin-
sic image algorithms.
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