PRISM Lecture 4 - Writing a Paper

Roger Grosse and Ishtiaque Ahmed

University of Toronto, Winter 2021

- Was going to give pointers on how to write papers
 - But what can I possibly say in 30 minutes?
- Instead:
 - What's different about academic writing?
 - Useful resources (much more out there than you can get through)
 - What to do as a beginning researcher: think about questions of communication as you read papers

Scientific Writing

What's different from the writing you've done so far?

- Higher standards
 - Highly competitive conference/journal submission
 - Need to convince skeptical readers
- You know way more about the topic than your readers
 - It's hard to remember what it's like not to know something
- Much more information to convey
 - 8 page limit is a surprisingly difficult constraint to meet!
- Need to make clean, informative figures
- Papers go through many rounds of revision, with feedback from your colleagues
- \bullet You need to be attuned to subtle $\mbox{LAT}_{\mbox{E}} X$ cues that readers rely on

$$logp(x) \text{ vs. } \log p(x) \qquad \qquad \mathbf{R} \text{ vs. } \mathbb{R}$$

$$\epsilon \text{ vs. } \varepsilon \qquad \qquad + \ldots + \text{ vs. } + \cdots +$$

Books on Scientific Writing

The Sense of Style, by Steven Pinker

- Pinker is a psychologist (of language) at Harvard, and one of the best popular science writers
- This book is about scientific writing, especially aimed at non-experts, and brings in some insights from cognitive science
- Gets you to think about what's going through the reader's mind
- Fun to read (even the parts about grammar!)

Books on Scientific Writing

Style: Lessons in Clarity and Grace, by Joseph M. Williams and Gregory G. Colomb

- About the mechanics of writing: how to organize your thoughts on a page
- How to organize words into sentences, sentences into paragraphs, etc.
- You may think you're done with this sort of thing, but I think 90% of you would still benefit from it

Books on Scientific Writing

Handbook of Writing for the Mathematical Sciences, by Nicholas J. Higham

- Covers issues specific to mathematical writing, e.g.
 - how to structure a proof
 - choices of mathematical notation
 - whether something should be a Proposition, Theorem, Lemma, etc.
 - how to punctuate equations
- Also helpful advice in general

- MIT AI Lab (Section 6): http://dspace.mit.edu/bitstream/ handle/1721.1/41487/AI_WP_316.pdf
- Phillip Guo: https://pg.ucsd.edu/publishing-academic-papers.htm
- Michael Ernst: https://homes.cs.washington.edu/~mernst/ advice/write-technical-paper.html
- Mary Shaw: http://www.cs.cmu.edu/~Compose/shaw-icse03.pdf
- CMU writing course: http://spoke.compose.cs.cmu.edu/write/Default.htm

General Advice

- Please check out these resources on your own time. Writing is a surprisingly important skill for research, and takes lots of practice
- In the meantime, as you read papers, think about them from a rhetorical perspective, so you get a sense for what does and doesn't work
- E.g., ask yourself
 - Who is the intended audience? (Experts in this sub-subfield? Computer scientists in general?)
 - What are the main points the author is trying to get across, both explicitly stated and implicit?
 - Did they succeed? Why or why not?
 - Was the paper easy for you to follow? Why or why not?
 - If there are figures, do they convey the information clearly? Why or why not?
 - Does the paper make you want to keep reading? Why or why not?

Sections of the Paper

Now I'll talk about the goals of the individual sections. As you read papers, ask yourself if the authors succeeded in these goals.

Introduction

- Should convey:
 - the problem they're trying to solve
 - the previous approaches, their strengths, and how they fall short
 - the authors' approach and how it's novel
 - the main evidence that it succeeded
- Should persuade the reader:
 - that the problem is interesting, important, and difficult
 - that the authors' approach is a plausible one
- Should get to the point with minimal preamble

Sections of a Paper

Background

- Should introduce any nonstandard notation that will be used in the paper
- Should explain all the ideas an expert reader would need to understand the paper
- Should cover only what's needed for the paper (in order to get to the main contribution as soon as possible)
- Should be mathematically precise

Related Work

- Should reference all the work that's clearly relevant
- Should clarify how the current work is related to past work, but also how it goes beyond it
- Often this section is written defensively (e.g. cites papers by potential reviewers)

PRISM-Lec4

Sections of a Paper

Methods

- The main technical meat of the paper
- Should explain the novel algorithms, theoretical results, etc.
- Should motivate all of the design choices
- Should present ideas in the most sensible order
- Should be organized such that the reader can read it linearly
- Should be mathematically precise and make assumptions and approximations explicit
- Should make it completely clear which parts are novel contributions
 - Failing to do so is a common writing mistake that can tank a conference submission
- Should anticipate the reader's objections or misconceptions

Sections of a Paper

Experiments

- Not meant to be read linearly often the figures and tables contain the important information
- Should highlight the questions the experiments are meant to answer
- Should explain the experimental methodology in enough detail for the reader to replicate
 - In practice, many details needed only for reproducibility, rather than understanding the logic of the experiments, are relegated to the Appendix
- Should justify the experimental design choices
- Should highlight and interpret the main findings
- Should discuss alternative explanations for the findings and how they're controlled for

Discussion/Conclusions

- Short (1–2 paragraphs)
- Recaps the main contributions and findings
- Similar to the introduction, except that the reader is better informed after having read the paper
- May highlight new, interesting directions opened up
 - but be careful of suggesting things the reviewers will say you should have done!
- Authors are allowed to speculate a bit here