
PRISM
Lecture 3 - Scientific Problem Solving

Roger Grosse and Ishtiaque Ahmed

University of Toronto, Winter 2021

PRISM (UofT) PRISM-Lec2 1 / 9



Today

Some research problems require genuine creativity, but this is
unusual

Most problems you’ll work on can be solved methodically (“99%
perspiration”)

Today: my attempt to list some problem solving strategies that
are relevant to all areas of CS

If I get hit by a bus tomorrow, my (senior) grad students should
be able to finish their projects and keep publishing based on the
advice here

PRISM (UofT) PRISM-Lec2 2 / 9



Generic Research Strategies

George Polya’s classic 1945 book,
“How to Solve It”

Generic problem solving heuristics
(reason by analogy, decompose into
subproblems, work backwards from
the goal, etc.)

Illustrated with high school
mathematics, but the advice is very
broadly applicable (even beyond
math)

An inspiration for a lot of early work
in AI (such as the term “heuristic”)

PRISM (UofT) PRISM-Lec2 3 / 9



Generic Research Strategies

What if you’re stuck?

Have you spent at least an hour brainstorming things to try?

This is usually enough time to come up with more ideas than you
can possibly follow through on!
Your supervisor or grad student mentor can help you prioritize
Your supervisor will be very impressed if you come prepared with a
list of ideas

Have you read the literature on topics that are obviously related?

What tricks and other advice have they come up with?

Have you found an experimental setup where you can iterate
quickly?

Machine learning: small datasets where you can train a model in
15 minutes
Math: special cases

PRISM (UofT) PRISM-Lec2 4 / 9



Generic Research Strategies

Consider related problems:

Is there an easier variant of the problem that still suits your
needs?

Math: add simplifying assumptions
Software: limit the functionality

Can you solve a more general version of the problem?

Usually more general problems are harder, but not always!
Can help focus your efforts if the details of the original problem are
irrelevant
If the more general case turns out to be impossible, that can
highlight relevant features of the original problem

Examine special cases

Easier to analyze one specific function, data instance, algorithm,
etc. than the “general case”
Look for patterns

PRISM (UofT) PRISM-Lec2 5 / 9



Generic Research Strategies

Think adversarially:
Search for reasons your approach can’t possibly work

Especially important early on — want to find out as fast as possible
if you started down a wrong path
Math: try to find counterexamples to your conjecture
AI: give your algorithm information for free which you’re hoping it
will be able to infer — if it still doesn’t work, then you know to give
up

E.g., if you think inferring 3-D geometry will help with object
recognition, try training a classifier on images labeled with 3-D
information

Try to break your method
Software: search for hard edge cases
Experimental design: look for confounds, alternative
explanations for your results

You often see a lot of new insights when you put on the adversary
hat

Your failure to come up with counterexamples may give hints to
why a statement is true

PRISM (UofT) PRISM-Lec2 6 / 9



Generic Research Strategies
Be careful:

There are many different things that can go wrong and ruin an experiment,
mathematical analysis, etc.

Software:

Use version control
Write unit tests and possibly regression tests
Be able to reproduce your past results
Keep your core, well-tested experimental code separate from your
throwaway scripts

Keep the configuration separate from the algorithmic logic

Math:

Check the results of complicated derivations numerically
Sanity check your formulas (correct units, plausible direct/inverse
relationships, etc.)

Plug in special cases

General:

Determine error bounds for all your measurements
Reproduce past results

Run some experiments where you know how they should turn out (since

these can reveal bugs)
PRISM (UofT) PRISM-Lec2 7 / 9



Generic Research Strategies

Figuring out why something doesn’t work:

Many different reasons an algorithm might not work well, e.g.

there’s a bug in your code
the information it’s exploiting isn’t very useful for the problem
the information it’s expoiting is already captured by other methods
the approximations you’re making degrade the accuracy too much
your hyperparameter search picks a configuration that effectively
disables your algorithm
your method actually works, but you’re using the wrong metrics
plus many more that are specific to your problem

Spend some time brainstorming all the possible explanations you
can think of

Then play “20 Questions”, designing experiments to distinguish
the hypotheses

PRISM (UofT) PRISM-Lec2 8 / 9



Generic Research Strategies

Getting help from your mentor:

“What should I do now?”

Be as specific as possible

If your algorithm isn’t working, what specific experimental results
lead you to conclude it’s not working?
Explain what you’ve already tried
Come prepared with a list of ideas — it’s easier for your mentor to
help prioritize than to answer your question from scratch

Make an effort to communicate things clearly

Beware the illusion of transparency: you’ve been working on
something for weeks/months, so things that are obvious to you
won’t be obvious to other people
Make clear, clean visualizations (axes clearly labeled, etc.)

PRISM (UofT) PRISM-Lec2 9 / 9


