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- Brief intro to RL
- Policy Gradient

- The log-derivative trick
- Practical fixes: baseline & temporal structure

- OpenAI Gym
- Example: policy gradient on Gym environments
- References

Slides on intro & policy gradient are from / inspired by the Deep RL Bootcamp Lecture 4A: 
Policy Gradients by Pieter Abbeel  https://www.youtube.com/watch?v=S_gwYj1Q-44 

https://www.youtube.com/watch?v=S_gwYj1Q-44


Brief Intro to RL
Represent agent with stochastic policy 

From Sutton & Barto “Reinforcement Learning: An Introduction”, 1998



From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel https://www.youtube.com/watch?v=S_gwYj1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44


From Deep RL Bootcamp Lecture 4A: Policy Gradients, Pieter Abbeel https://www.youtube.com/watch?v=S_gwYj1Q-44

https://www.youtube.com/watch?v=S_gwYj1Q-44


Policy Gradient
Suppose we have a trajectory: 

And represent the reward for the whole trajectory: 

The expected reward under policy      (utility function):

The goal is to find the optimal parameters to max the utility function.



Policy Gradient: the log-derivative trick
Take the gradient:



Policy Gradient: approximate gradient with samples
Now we can approximate the gradient using Monte Carlo Samples!

Where       are sample rollout trajectories under policy 



Policy Gradient: approximate gradient with samples
Take a moment to appreciate this:

This gradient approximation is valid even when:

- The reward is discontinuous / unknown
- Sample space is a discrete set



Policy Gradient: intuition

The gradient tries to:

- Increase probability of paths with positive rewards
- Decrease probability of paths with negative rewards

Does NOT try to change the paths themselves.

See any problems here? 



Decomposing the paths into states & actions

Not a function of 



Policy Gradient: problems and fixes
The vanilla policy gradient estimator is unbiased, but very noisy. 

- Requires lots of samples to make it work

Fixes:

- Baseline 
- Temporal Structure
- Other (e.g. KL trust region)



Policy Gradient: baseline

Subtract the reward with a baseline (b) does not change the optimization problem.

- The gradient estimation is still unbiased, but with lower variance

Intuition: we want to adjust path probabilities based on how the path reward 
compares to the average, not the path reward itself.

- Increase probability if the path reward is higher than average
- Decrease probability if the path reward is lower than average



Policy Gradient: temporal structure
 Put together 
what we have:

Past reward does not affect current action



OpenAI Gym
https://gym.openai.com/

Widely-used testing platform for RL algorithms.

● pip install gym

Different kinds of environments, including discrete / continuous control, pixel-input 
Atari games, etc.

You can also create your own environments, following the Gym interface.

https://gym.openai.com/


OpenAI Gym environments
Create an environment:

● env = gym.make(“<environment_name>”)  ← e.g. gym.make(“CartPole-v1”)

Env methods you will need the most:

● state = env.reset()

● next_state, reward, done, info = env.step(action)

● env.seed(seed=None)

● env.close()

More documentation at https://gym.openai.com/docs/ 

Useful attributes:

● env.observation_space

● env.action_space

https://gym.openai.com/docs/


Example: Policy Gradient in PyTorch 
on a Gym Environment (CartPole-v1)
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