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0.1 Multivariable Calculus Review

We will be covering some of the most relevant concepts from multivariable calculus for this course,
and show how they can be extended to deal with matrices of training data.

0.1.1 Partial Derivatives

The derivative of a function of 2 variables f (x, y) w.r.t. either one of its variables is defined as

∂

∂x
f (x, y) := lim

h→0

f (x + h, y)− f (x, y)
h

∂

∂y
f (x, y) := lim

h→0

f (x, y + h)− f (x, y)
h

This is a very obvious extension going from the derivative definition for functions of single
variables. As an example, what is ∂

∂x f (x, y) where f (x, y) = x2cos(xy)?

∂

∂x
f (x, y) = 2xcos(xy)− x2sin(xy)y

0.1.2 Directional Derivatives

Before we define the gradient, we discuss the closely related concept of a directional derivative.
The directional derivative of a function f (x, y) at (x0, y0) moving in the direction of a unit

vector u = [a, b] is

Du f (x0, y0) := lim
h→0

f (x0 + ha, y0 + hb)− f (x0, y0)

h
This simply tells us how the scalar output of f will change when we move in an arbitrary

direction that is not necesarily axis-aligned. It can be written as

Du f (x, y) =
[

∂

∂x
f (x, y),

∂

∂y
f (x, y)

]
· u
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0.1.3 Gradient

This is perhaps the term you will hear most often in the context of neural networks. The gradient is
informally defined as the vector pointing in the direction of steepest increase for a given function.
Thus, if we would like to minimize a loss function such as mean squared error (MSE), we move in
the opposite direction of the gradient, i.e. in the direction of the negative gradient.

Now the gradient is simply defined as

∇ f (x, y) :=
[

∂

∂x
f (x, y),

∂

∂y
f (x, y)

]
Note that this is a vector-field (vector-valued function), and not a scalar-valued function!
What does ∇ f (x, y) have to do with neural networks and minimizing loss functions? Let’s

see in which direction the directional derivative achieves the highest possible value. Using the
gradient notation, we can rewrite the directional derivative as

Du f (x, y) = ∇ f (x, y) · u
= ||∇ f (x, y)||2 · ||u||2 · cos(θ)
= ||∇ f (x, y)||2 · cos(θ)

This quantity is maximized when cos(θ) = 1, i.e. ∇ f (x, y) and u are parallel. Therefore, the
gradient points in the direction of steepest increase for f .

So if f is a neural network parameterized by some weights w, and x ∈ RD is some input to it,
then taking steps in ∇w fw(x) will move us in the direction that maximizes the output of f . Thus,
if f is a binary classification network, say the probability of an image being of a car, then moving
in this direction would maximimally increase the probability of x being classified as a car.

0.2 Basic ML Setup

If you recall from CSC411, the basic supervised learning scenarios are regression and classification.
Most buzz in computer vision has driven by success on classifcation problems, so we start with
that first.

0.2.1 Classification

In K-class classification, we are given a dataset {x(i), t(i)}N
i=1 of N samples where x(i) ∈ RD and

t(i) ∈ [1, ..., K].
We would like to fit a probabilistic model, in our case a neural network, that maximizes the

probability

N

∏
i=1

p(t(i)|x(i), w)

we can vectorize these objects/terms by defining

X =

 (x
(1))⊤

...
(x(N))⊤
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T =

 (t(i))⊤
...

(t(N))⊤


where X is called the design matrix, and has dimensions (N, D), where entry Xij corresponds

to the j-th feature for the i-th training sample. T is our matrix of labels. The i-th row of T is the
one-hot encoded vector of the label for the i-th sample which is simply a K-dimensional vector
of all 0s except for the a single 1 in the position of the label. If K = 4, and t(i) = 2, the one-hot
encoded version is 

0
1
0
0


We assume that all vectors are column vectors.
Our goal becomes to maximize the probability

p(t|X, w) =
N

∏
i=1

p(t(i)|x(i), w)

=
N

∏
i=1

K

∏
k=1

p(k|x(i), w)Tik

Note that just the term in the innermost product corresponding to the true label of the i-th can
be less than 1. Since this expression would lead to numerical underflow given a large enough
dataset, we can equivalently maximize a monotonically increasing function of this expression,
i.e. take the log

log

(
N

∏
i=1

K

∏
k=1

p(k|x(i), w)Tik

)
=

N

∑
i=1

K

∑
k=1

Tiklog(p(k|x(i), w))

If we negate this term, we end up with the most popular loss function for classification known
as cross-entropy

LCE = −
N

∑
i=1

K

∑
k=1

Tiklog(p(k|x(i), w))

Our goal is to minimize LCE by moving in the direction −∇wLCE.

0.2.2 Linear Regression

Multivariate input. Univariate output. RM → R
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Forward pass Suppose we have some features x1, x2, . . . , xM, and we predict a single scalar
y = w1x1 + w2x2 + · · ·+ wMxM. We can write this in matrix notation as a dot product

y =
M

∑
i=1

wixi = wTx where w =


w1
w2
...

wM

 , x =


x1
x2
...

xM


We say x ∈ RM to indicate that x is a M-dimensional vector.

Backward pass Suppose we have a target t and a loss function L = (y − t)2, what is the
gradient ∇wL?

Remember the definition of the gradient,

∇wL =


∂L

∂w1
∂L

∂w2
...

∂L
∂wM


Each element is a partial derivative that can be written out using chain rule.

∂L
∂wi

=
∂L
∂y

∂y
∂wi

= 2(y − t) xi

So the gradient is

∇wL =

 2(y − t) x1
...

2(y − t) xM

 = 2(y − t)x

Remark. There are some matrix calculus formulas that are worth remembering. One that we
could have used here is

wTx =⇒ ∇wwTx = x

So the math becomes much easier.

∇wL = (∇yL)(∇wy)︸ ︷︷ ︸
Chain rule holds for matrix calculus.

= 2(y − t)x

Multivariate input. Multivariate output. RD → RM

Forward pass Suppose we have some features x1, x2, . . . , xD, and we predict a vector y ∈ RM

where yj = wj1x1 + wj2x2 + · · ·+ wjDxD. We can write this in matrix notation as a matrix-vector
product.

y =


w11x1, w12x2, · · ·w1DxD
w21x1, w22x2, · · ·w2DxD

...
wM1x1, wM2x2, · · ·wMDxD

 =


wT

1 x
wT

2 x
...

wT
Mx

 = Wx where W =


wT

1
wT

2
...

wT
M

 =


w11 w12 . . . w1D
w21 w22 . . . w2D

...
wM1 wM2 . . . wMD


We say W ∈ RM×D to indicate that W is a matrix of dimension M by D.
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