
CSC421/2516 Lecture 21:
Q-Learning

Roger Grosse and Jimmy Ba

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 1 / 22



Final Exam

Thursday, April 25, 9am-noon

Surname A–G: Bahen (BA) 2159
Last names H–Z: Medical Sciences (MS) 2158

Covers all lectures, tutorials, homeworks, and programming
assignments

1/3 from the first half, 2/3 from the second half
Lectures 10, 11, 19, 22 not tested
If there’s a question on Lecture 21, it will be easy

Emphasis on concepts covered in multiple of the above

Similar in format and difficulty to the midterm, but about 2x longer

Practice exams are posted

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 2 / 22



Overview

Second of 3 lectures on reinforcement learning

Last time: policy gradient (e.g. REINFORCE)

Optimize a policy directly, don’t represent anything about the
environment

Today: Q-learning

Learn an action-value function that predicts future returns

Next time: AlphaGo uses both a policy network and a value network

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 3 / 22



Overview

Agent interacts with an environment, which we treat as a black box

Your RL code accesses it only through an API since it’s external to
the agent

I.e., you’re not “allowed” to inspect the transition probabilities, reward
distributions, etc.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 4 / 22



Recap: Markov Decision Processes

The environment is represented as a Markov decision process (MDP)
M.

Markov assumption: all relevant information is encapsulated in the
current state

Components of an MDP:

initial state distribution p(s0)
transition distribution p(st+1 | st , at)
reward function r(st , at)

policy πθ(at | st) parameterized by θ

Assume a fully observable environment, i.e. st can be observed directly

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 5 / 22



Finite and Infinite Horizon

Last time: finite horizon MDPs

Fixed number of steps T per episode
Maximize expected return R = Ep(τ)[r(τ)]

Now: more convenient to assume infinite horizon

We can’t sum infinitely many rewards, so we need to discount them:
$100 a year from now is worth less than $100 today
Discounted return

Gt = rt + γrt+1 + γ2rt+2 + · · ·

Want to choose an action to maximize expected discounted return
The parameter γ < 1 is called the discount factor

small γ = myopic
large γ = farsighted

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 6 / 22



Value Function

Value function V π(s) of a state s under policy π: the expected
discounted return if we start in s and follow π

V π(s) = E[Gt | st = s]

= E

[ ∞∑
i=0

γ i rt+i | st = s

]

Computing the value function is generally impractical, but we can try
to approximate (learn) it

The benefit is credit assignment: see directly how an action affects
future returns rather than wait for rollouts

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 7 / 22



Value Function

Rewards: -1 per time step

Undiscounted (γ = 1)

Actions: N, E, S, W

State: current location
Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 8 / 22



Value Function

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 9 / 22



Action-Value Function

Can we use a value function to choose actions?

arg max
a

r(st , a) + γEp(st+1 | st ,at)[V
π(st+1)]

Problem: this requires taking the expectation with respect to the
environment’s dynamics, which we don’t have direct access to!

Instead learn an action-value function, or Q-function: expected
returns if you take action a and then follow your policy

Qπ(s, a) = E[Gt | st = s, at = a]

Relationship:

V π(s) =
∑
a

π(a | s)Qπ(s, a)

Optimal action:
arg max

a
Qπ(s, a)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 10 / 22



Action-Value Function

Can we use a value function to choose actions?

arg max
a

r(st , a) + γEp(st+1 | st ,at)[V
π(st+1)]

Problem: this requires taking the expectation with respect to the
environment’s dynamics, which we don’t have direct access to!

Instead learn an action-value function, or Q-function: expected
returns if you take action a and then follow your policy

Qπ(s, a) = E[Gt | st = s, at = a]

Relationship:

V π(s) =
∑
a

π(a | s)Qπ(s, a)

Optimal action:
arg max

a
Qπ(s, a)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 10 / 22



Bellman Equation

The Bellman Equation is a recursive formula for the action-value
function:

Qπ(s, a) = r(s, a) + γEp(s′ | s,a)π(a′ | s′)[Q
π(s′, a′)]

There are various Bellman equations, and most RL algorithms are
based on repeatedly applying one of them.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 11 / 22



Optimal Bellman Equation

The optimal policy π∗ is the one that maximizes the expected
discounted return, and the optimal action-value function Q∗ is the
action-value function for π∗.

The Optimal Bellman Equation gives a recursive formula for Q∗:

Q∗(s, a) = r(s, a) + γEp(s′ | s,a)

[
max
a′

Q∗(st+1, a
′) | st = s, at = a

]
This system of equations characterizes the optimal action-value
function. So maybe we can approximate Q∗ by trying to solve the
optimal Bellman equation!

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 12 / 22



Q-Learning

Let Q be an action-value function which hopefully approximates Q∗.

The Bellman error is the update to our expected return when we
observe the next state s′.

r(st , at) + γmax
a

Q(st+1, a)︸ ︷︷ ︸
inside E in RHS of Bellman eqn

− Q(st , at)

The Bellman equation says the Bellman error is 0 in expectation

Q-learning is an algorithm that repeatedly adjusts Q to minimize the
Bellman error

Each time we sample consecutive states and actions (st , at , st+1):

Q(st , at)← Q(st , at) + α
[
r(st , at) + γmax

a
Q(st+1, a)− Q(st , at)

]
︸ ︷︷ ︸

Bellman error

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 13 / 22



Exploration-Exploitation Tradeoff

Notice: Q-learning only learns about the states and actions it visits.

Exploration-exploitation tradeoff: the agent should sometimes pick
suboptimal actions in order to visit new states and actions.

Simple solution: ε-greedy policy

With probability 1− ε, choose the optimal action according to Q
With probability ε, choose a random action

Believe it or not, ε-greedy is still used today!

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 14 / 22



Exploration-Exploitation Tradeoff

You can’t use an epsilon-greedy strategy with policy gradient because
it’s an on-policy algorithm: the agent can only learn about the policy
it’s actually following.

Q-learning is an off-policy algorithm: the agent can learn Q regardless
of whether it’s actually following the optimal policy

Hence, Q-learning is typically done with an ε-greedy policy, or some
other policy that encourages exploration.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 15 / 22



Q-Learning

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 16 / 22



Function Approximation

So far, we’ve been assuming a tabular representation of Q: one entry
for every state/action pair.

This is impractical to store for all but the simplest problems, and
doesn’t share structure between related states.

Solution: approximate Q using a parameterized function, e.g.

linear function approximation: Q(s, a) = w>ψ(s, a)
compute Q with a neural net

Update Q using backprop:

t ← r(st , at) + γmax
a

Q(st+1, a)

θ ← θ + α(t − Q(s, a))
∂Q

∂θ

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 17 / 22



Function Approximation

Approximating Q with a neural net is a decades-old idea, but
DeepMind got it to work really well on Atari games in 2013 (“deep
Q-learning”)
They used a very small network by today’s standards

Main technical innovation: store experience into a replay buffer, and
perform Q-learning using stored experience

Gains sample efficiency by separating environment interaction from
optimization — don’t need new experience for every SGD update!

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 18 / 22



Atari

Mnih et al., Nature 2015. Human-level control through deep
reinforcement learning

Network was given raw pixels as observations

Same architecture shared between all games

Assume fully observable environment, even though that’s not the case

After about a day of training on a particular game, often beat
“human-level” performance (number of points within 5 minutes of
play)

Did very well on reactive games, poorly on ones that require planning
(e.g. Montezuma’s Revenge)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=4MlZncshy1Q

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 19 / 22

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=4MlZncshy1Q


Wireheading

If rats have a lever that causes an electrode to stimulate certain
“reward centers” in their brain, they’ll keep pressing the lever at the
expense of sleep, food, etc.

RL algorithms show this “wireheading” behavior if the reward
function isn’t designed carefully

https://blog.openai.com/faulty-reward-functions/

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 20 / 22

https://blog.openai.com/faulty-reward-functions/


Policy Gradient vs. Q-Learning

Policy gradient and Q-learning use two very different choices of
representation: policies and value functions

Advantage of both methods: don’t need to model the environment

Pros/cons of policy gradient

Pro: unbiased estimate of gradient of expected return
Pro: can handle a large space of actions (since you only need to sample
one)
Con: high variance updates (implies poor sample efficiency)
Con: doesn’t do credit assignment

Pros/cons of Q-learning

Pro: lower variance updates, more sample efficient
Pro: does credit assignment
Con: biased updates since Q function is approximate (drinks its own
Kool-Aid)
Con: hard to handle many actions (since you need to take the max)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 21 / 22



Actor-Critic (optional)

Actor-critic methods combine the best of both worlds

Fit both a policy network (the “actor”) and a value network (the
“critic”)

Repeatedly update the value network to estimate V π

Unroll for only a few steps, then compute the REINFORCE policy
update using the expected returns estimated by the value network

The two networks adapt to each other, much like GAN training

Modern version: Asynchronous Advantage Actor-Critic (A3C)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 21: Q-Learning 22 / 22


