
CSC421/2516 Lecture 19:
Bayesian Neural Nets

Roger Grosse and Jimmy Ba

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 1 / 22



Overview

Some of our networks have used probability distributions:

Cross-entropy loss is based on a probability distribution over categories.
Generative models learn a distribution over x.
Stochastic computations (e.g. dropout).

But we’ve always fit a point estimate of the network weights.

Today, we see how to learn a distribution over the weights in order to
capture our uncertainty.

This lecture will not be on the final exam.
Depends on CSC411/2515 lectures on Bayesian inference, which some
but not all of you have seen.
We can’t cover BNNs properly in 1 hour, so this lecture is just a
starting point.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 2 / 22



Overview

Why model uncertainty?

Smooth out the predictions by averaging over lots of plausible
explanations (just like ensembles!)
Assign confidences to predictions (i.e. calibration)
Make more robust decisions (e.g. medical diagnosis)
Guide exploration (focus on areas you’re uncertain about)
Detect out-of-distribution examples, or even adversarial examples

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 3 / 22



Overview

Two types of uncertainty
Aleatoric uncertainty: inherent uncertainty in the environment’s
dynamics

E.g., output distribution for a classifier or a language model (from the
softmax)
Alea = Latin for “dice”

Epistemic uncertainty: uncertainty about the model parameters

We haven’t yet considered this type of uncertainty in this class.
This is where Bayesian methods come in.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 4 / 22



Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w | D) ∝ p(w)p(D |w)

Make predictions using the posterior predictive distribution:

p(t | x,D) =

∫
p(w | D) p(t | x,w) dw

Doing this lets us quantify our uncertainty.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 5 / 22



Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.

Prior distribution: w ∼ N (0,S)

Likelihood: t | x,w ∼ N (w>ψ(x), σ2)

Assuming fixed/known S and σ2 is a big assumption. There are ways
to estimate them, but we’ll ignore that for now.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 6 / 22



Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 7 / 22



Bayesian Linear Regression

Example with radial basis function (RBF) features

φj(x) = exp

(
−

(x − µj)2

2s2

)

— Bishop, Pattern Recognition and Machine Learning

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 8 / 22



Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 9 / 22



Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 10 / 22



Bayesian Neural Networks

As we know, fixed basis functions are limited. Can we combine the
advantages of neural nets and Bayesian models?

Bayesian neural networks (BNNs)
Place a prior on the weights of the network, e.g. p(θ) = N (θ; 0, ηI)

In practice, typically separate variance for each layer

Define an observation model, e.g. p(t | x,θ) = N (t; fθ(x), σ2)
Apply Bayes’ Rule:

p(θ | D) ∝ p(θ)
N∏
i=1

p(t(i) | x(i),θ)

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 11 / 22



Samples from the Prior

We can understand a Bayesian model by looking at prior samples of
the functions.

Here are prior samples of the function for BNNs with one hidden layer
and 10,000 hidden units.

— Neal, Bayesian Learning for Neural Networks

In the 90s, Radford Neal showed that under certain assumptions, an
infinitely wide BNN approximates a Gaussian process.

Just in the last few years, similar results have been shown for deep
BNNs.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 12 / 22



Posterior Inference: MCMC

One way to use posterior uncertainty is to sample a set of values
θ1, . . . ,θK from the posterior p(θ | D) and then average their
predictive distributions:

p(t | x,D) ≈
K∑

k=1

p(t | x, θk).

We can’t sample exactly from the posterior, but we can do so
approximately using Markov chain Monte Carlo (MCMC), a class of
techniques covered in CSC412/2506.

In particular, an MCMC algorithm called Hamiltonian Monte Carlo
(HMC). This is still the “gold standard” for doing accurate posterior
inference in BNNs.

Unfortunately, HMC doesn’t scale to large datasets, because it is
inherently a batch algorithm, i.e. requires visiting the entire training
set for every update.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 13 / 22



Posterior Inference: Variational Bayes

A less accurate, but more scalable, approach is variational inference,
just like we used for VAEs.

Variational inference for Bayesian models is called variational Bayes.

We approximate a complicated posterior distribution with a simpler
variational approximation. E.g., assume a Gaussian posterior with
diagonal covariance (i.e. fully factorized Gaussian):

q(θ) = N (θ;µ,Σ)

=
D∏
j=1

N (θj ;µj , σj)

This means each weight of the network
has its own mean and variance. — Blundell et al.,

Weight uncertainty for neural networks

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 14 / 22



Posterior Inference: Variational Bayes

The marginal likelihood is the probability of the observed data
(targets given inputs), with all possible weights marginalized out:

p(D) =

∫
p(θ) p(D |θ) dθ

=

∫
p(θ) p({t(i)} | {x(i)},θ) dθ.

Analogously to VAEs, we define a variational lower bound:

log p(D) ≥ F(q) = Eq(θ)[log p(D |θ)]−DKL(q(θ) ‖ p(θ))

Unlike with VAEs, p(D) is fixed, and we are only maximizing F(q)
with respect to the variational posterior q (i.e. a mean and standard
deviation for each weight).

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 15 / 22



Posterior Inference: Variational Bayes

log p(D) ≥ F(q) = Eq(θ)[log p(D |θ)]−DKL(q(θ) ‖ p(θ))

Same as for VAEs, the gap equals the KL divergence from the true
posterior:

F(q) = log p(D)−DKL(q(θ) ‖ p(θ | D)).

Hence, maximizing F(q) is equivalent to approximating the posterior.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 16 / 22



Posterior Inference: Variational Bayes

Likelihood term:

Eq(θ)[log p(D |θ)] = Eq(θ)

[
N∑
i=1

log p(t(i) | x(i),θ)

]

This is just the usual likelihood term (e.g. minus classification
cross-entropy), except that θ is sampled from q.

KL term:
DKL(q(θ) ‖ p(θ))

This term encourages q to match the prior, i.e. each dimension to be
close to N (0, η1/2).

Without the KL term, the optimal q would be a point mass on θML,
the maximum likelihood weights.

Hence, the KL term encourages q to be more spread out (i.e. more
stochasticity in the weights).

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 17 / 22



Posterior Inference: Variational Bayes

We can train a variational BNN using the same reparameterization
trick as from VAEs.

θj = µj + σjεj ,

where εj ∼ N (0, 1).

Then the εj are sampled at the beginning, independent of the µj , σj ,
so we have a deterministic computation graph we can do backprop on.

If all the σj are 0, then θj = µj , and this reduces to ordinary backprop
for a deterministic neural net.

Hence, variational inference injects stochasticity into the
computations. This acts like a regularizer, just like with dropout.

The difference is that it’s stochastic activations, rather than stochastic
weights.
See Kingma et al., “Variational dropout and the local
reparameterization trick”, for the precise connections between
variational BNNs and dropout.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 18 / 22



Posterior Inference: Variational Bayes

Bad news: variational BNNs aren’t a good match to Bayesian
posterior uncertainty.

The BNN posterior distribution is complicated and high dimensional,
and it’s really hard to approximate it accurately with fully factorized
Gaussians.

— Hernandez-Lobato et al., Probabilistic Backpropagation

So what are variational BNNs good for?

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 19 / 22



Description Length Regularization

What variational BNNs are really doing is regularizing the description
length of the weights.

Intuition: the more concentrated the posterior is, the more bits it
requires to describe the location of the weights to adequate precision.

A more concentrated q generally implies a higher KL from the prior.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 20 / 22



Description Length Regularization

The KL term DKL(q(θ) ‖ p(θ)) can be interpreted as the number of
bits required to describe θ to adequate precision.

This can be made precise using the bits-back argument. This is beyond
the scope of the class, but see here for a great explanation:

https://youtu.be/0IoLKnAg6-s

A classic result from computational learning theory (“Occam’s
Razor”) bounded the generalization error a learning algorithm that
selected from K possible hypotheses.

It requires logK bits to specify the hypothesis.
PAC-Bayes gives analogous bounds for the generalization error of
variational BNNs, where DKL(q(θ) ‖ p(θ)) behaves analogously to
logK .

This is one of the few ways we have to prove that neural nets
generalize.
See Dziugaite et al., “Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than
training data”.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 21 / 22

https://youtu.be/0IoLKnAg6-s


Uses of BNNs

Guiding exploration

Bayesian optimization: Snoek et al., 2015. Scalable Bayesian
optimization using deep neural networks.
Curriculum learning: Graves et al., 2017. Automated curriculum
learning for neural networks
Intrinsic motivation in reinforcement learning: Houthooft et al., 2016.
Variational information maximizing exploration

Network compression: Louizos et al., 2017. Bayesian compression for
deep learning

Lots more references in CSC2541, “Scalable and Flexible Models of
Uncertainty”

https://csc2541-f17.github.io/

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 19: Bayesian Neural Nets 22 / 22

https://csc2541-f17.github.io/

