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Overview

We’ve talked a lot about how to compute gradients. What do we
actually do with them?

Today’s lecture: various things that can go wrong in gradient descent,
and what to do about them.

Let’s group all the parameters (weights and biases) of our network
into a single vector θ.

This lecture makes heavy use of the spectral decomposition of
symmetric matrices, so it would be a good idea to review this.

Subsequent lectures will not build on the more mathematical parts of
this lecture, so you can take your time to understand it.
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Features of the Optimization Landscape

convex functions local minima saddle points

plateaux

narrow ravines
cliffs (covered in a

later lecture)
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Review: Hessian Matrix

The Hessian matrix, denoted H, or ∇2J is the matrix of second
derivatives:

H = ∇2J =


∂2J
∂θ21

∂2J
∂θ1∂θ2

· · · ∂2J
∂θ1∂θD

∂2J
∂θ2∂θ1

∂2J
∂θ22

· · · ∂2J
∂θ2∂θD

...
...

. . .
...

∂2J
∂θD∂θ1

∂2J
∂θD∂θ2

· · · ∂2J
∂θ2D


It’s a symmetric matrix because ∂2J

∂θi∂θj
= ∂2J

∂θj∂θi
.
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Review: Hessian Matrix

Locally, a function can be approximated by its second-order Taylor
approximation around a point θ0:

J (θ) ≈ J (θ0) +∇J (θ0)>(θ − θ0) + 1
2(θ − θ0)>H(θ0)(θ − θ0).

A critical point is a point where the gradient is zero. In that case,

J (θ) ≈ J (θ0) + 1
2(θ − θ0)>H(θ0)(θ − θ0).
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Review: Hessian Matrix

A lot of important features of the optimization landscape can be
characterized by the eigenvalues of the Hessian H.

Recall that a symmetric matrix (such as H) has only real eigenvalues,
and there is an orthogonal basis of eigenvectors.

This can be expressed in terms of the spectral decomposition:

H = QΛQ>,

where Q is an orthogonal matrix (whose columns are the
eigenvectors) and Λ is a diagonal matrix (whose diagonal entries are
the eigenvalues).
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Review: Hessian Matrix

We often refer to H as the curvature of a function.

Suppose you move along a line defined by θ + tv for some vector v.

Second-order Taylor approximation:

J (θ + tv) ≈ J (θ) + t∇J (θ)>v +
t2

2
v>H(θ)v

Hence, in a direction where v>Hv > 0, the cost function curves
upwards, i.e. has positive curvature. Where v>Hv < 0, it has
negative curvature.
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Review: Hessian Matrix

A matrix A is positive definite if v>Av > 0 for all v 6= 0. (I.e., it
curves upwards in all directions.)

It is positive semidefinite (PSD) if v>Av ≥ 0 for all v 6= 0.

Equivalently: a matrix is positive definite iff all its eigenvalues are
positive. It is PSD iff all its eigenvalues are nonnegative. (Exercise:
show this using the Spectral Decomposition.)

For any critical point θ∗, if H(θ∗) exists and is positive definite, then
θ∗ is a local minimum (since all directions curve upwards).
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Convex Functions

Recall: a set S is convex if for any x0, x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

A function f is convex if for any x0, x1,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.
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Convex Functions

If J is smooth (more precisely, twice differentiable), there’s an
equivalent characterization in terms of H:

A smooth function is convex iff its Hessian is positive semidefinite
everywhere.
Special case: a univariate function is convex iff its second derivative is
nonnegative everywhere.

Exercise: show that squared error, logistic-cross-entropy, and
softmax-cross-entropy losses are convex (as a function of the network
outputs) by taking second derivatives.
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Convex Functions

For a linear model,
z = w>x + b is a linear
function of w and b. If
the loss function is
convex as a function of
z , then it is convex as a
function of w and b.

Hence, linear regression,
logistic regression, and
softmax regression are
convex.
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Local Minima

If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

This is very convenient for optimization since if we keep going
downhill, we’ll eventually reach a global minimum.

Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

I.e., we can re-order the hidden units in a way that preserves the
function computed by the network.
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Local Minima

By definition, if a function J is convex, then for any set of points
θ1, . . . ,θN in its domain,

J (λ1θ1 + · · ·+λNθN) ≤ λ1J (θ1) + · · ·+λNJ (θN) for λi ≥ 0,
∑
i

λi = 1.

Because of permutation symmetry, there are K ! permutations of the
hidden units in a given layer which all compute the same function.

Suppose we average the parameters for all K ! permutations. Then we
get a degenerate network where all the hidden units are identical.

If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

Hence, training multilayer neural nets is non-convex.
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Local Minima (optional, informal)

Generally, local minima aren’t something we worry much about when
we train most neural nets.

They’re normally only a problem if there are local minima “in function
space”. E.g., CycleGANs (covered later in this course) have a bad local
minimum where they learn the wrong color mapping between domains.

It’s possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It’s poorly understood why these don’t arise in
practice.
Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

Then it’s essentially a regression problem, which is convex.
Hence, local optima can probably be fixed by adding more hidden units.
Note: this argument hasn’t been made rigorous.

Over the past 5 years or so, CS theorists have made lots of progress
proving gradient descent converges to global minima for some
non-convex problems, including some specific neural net architectures.
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Saddle points

A saddle point is a point where:

∇J (θ) = 0

H(θ) has some positive and some negative eigenvalues, i.e. some
directions with positive curvature and some with negative curvature.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.
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Saddle points

Suppose you have two hidden units with identical incoming and
outgoing weights.

After a gradient descent update, they will still have identical weights.
By induction, they’ll always remain identical.

But if you perturbed them slightly, they can start to move apart.

Important special case: don’t initialize all your weights to zero!

Instead, break the symmetry by using small random values.

Roger Grosse and Jimmy Ba CSC421/2516 Lectures 7–8: Optimization 16 / 41



Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold activations

logistic activations & least squares
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Plateaux

An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi φ
′(z)

wij = zi xj

If φ′(zi ) is always close to zero, then the weights will get stuck.

If there is a ReLU unit whose input zi is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.
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Ill-conditioned curvature

Long, narrow ravines:

Suppose H has some large positive eigenvalues (i.e. high-curvature
directions) and some eigenvalues close to 0 (i.e. low-curvature directions).

Gradient descent bounces back and forth in high curvature directions and
makes slow progress in low curvature directions.

To interpret this visually: the gradient is perpendicular to the contours.

This is known as ill-conditioned curvature. It’s very common in neural net
training.
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Ill-conditioned curvature: gradient descent dynamics

To understand why ill-conditioned curvature is a problem, consider a
convex quadratic objective

J (θ) =
1

2
θ>Aθ,

where A is PSD.

Gradient descent update:

θk+1 ← θk − α∇J (θk)

= θk − αAθk

= (I− αA)θk

Solving the recurrence,

θk = (I− αA)kθ0

Roger Grosse and Jimmy Ba CSC421/2516 Lectures 7–8: Optimization 20 / 41



Ill-conditioned curvature: gradient descent dynamics

We can analyze matrix powers such as (I− αA)kθ0 using the spectral
decomposition.

Let A = QΛQ> be the spectral decomposition of A.

(I− αA)kθ0 = (I− αQΛQ>)kθ0

= [Q(I− αΛ)Q>]kθ0

= Q(I− αΛ)kQ>θ0

Hence, in the Q basis, each coordinate gets multiplied by (1− αλi )k ,
where the λi are the eigenvalues of A.

Cases:

0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)
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Ill-conditioned curvature: gradient descent dynamics

Just showed

0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)

Hence, we need to set the learning rate α < 2/λmax to prevent
instability, where λmax is the largest eigenvalue, i.e. maximum
curvature.

This bounds the rate of progress in another direction:

αλi <
2λi
λmax

.

The quantity λmax/λmin is known as the condition number of A.
Larger condition numbers imply slower convergence of gradient
descent.
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Ill-conditioned curvature: gradient descent dynamics

The analysis we just did was for a quadratic toy problem

J (θ) =
1

2
θ>Aθ.

It can be easily generalized to a quadratic not centered at zero, since
the gradient descent dynamics are invariant to translation.

J (θ) =
1

2
θ>Aθ + b>θ + c

Since a smooth cost function is well approximated by a convex
quadratic (i.e. second-order Taylor approximation) in the vicinity of a
(local) optimum, this analysis is a good description of the behavior of
gradient descent near a (local) optimum.

If the Hessian is ill-conditioned, then gradient descent makes slow
progress towards the optimum.
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Ill-conditioned curvature: normalization

Suppose we have the following dataset for linear regression.

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2

98.8 0.00279 4.1
...

...
...

wi = y xi

Which weight, w1 or w2, will receive a larger gradient descent update?

Which one do you want to receive a larger update?

Note: the figure vastly understates the narrowness of the ravine!

Roger Grosse and Jimmy Ba CSC421/2516 Lectures 7–8: Optimization 24 / 41



Ill-conditioned curvature: normalization

Or consider the following dataset:

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8

998.3 1003.4 2.9
...

...
...
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Ill-conditioned curvature: normalization

To avoid these problems, it’s a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

x̃j =
xj − µj
σj

Hidden units may have non-centered activations, and this is harder to
deal with.

One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.
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Momentum

Unfortunately, even with these normalization tricks, ill-conditioned
curvature is a fact of life. We need algorithms that are able to deal
with it.

Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

p← µp− α∂J
∂θ

θ ← θ + p

α is the learning rate, just like in gradient descent.

µ is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 1?

If µ = 1, conservation of energy implies it will never settle down.
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Momentum

In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the
gradients point in the same direction,
allowing the parameters to pick up speed.

If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

− α

1− µ
· ∂J
∂θ

This suggests if you increase µ, you should lower α to compensate.

Momentum sometimes helps a lot, and almost never hurts.

Roger Grosse and Jimmy Ba CSC421/2516 Lectures 7–8: Optimization 28 / 41



Learning Rate

The learning rate α is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability

Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, . . .).
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Training Curves

To diagnose optimization problems,
it’s useful to look at training curves:
plot the training cost as a function
of iteration.

Gotcha: use a fixed subset of the
training data to monitor the
training error. Evaluating on a
different batch (e.g. the current
one) in each iteration adds a lot of
noise to the curve!

Gotcha: it’s very hard to tell from
the training curves whether an
optimizer has converged. They can
reveal major problems, but they
can’t guarantee convergence.
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Stochastic Gradient Descent

So far, the cost function J has been the average loss over the
training examples:

J (θ) =
1

N

N∑
i=1

J (i)(θ) =
1

N

N∑
i=1

L(y(x(i),θ), t(i)).

By linearity,

∇J (θ) =
1

N

N∑
i=1

∇J (i)(θ).

Computing the gradient requires summing over all of the training
examples. This is known as batch training.

Batch training is impractical if you have a large dataset (e.g. millions
of training examples)!
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Stochastic Gradient Descent

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example:

θ ← θ − α∇J (i)(θ)

SGD can make significant progress before it has even looked at all the data!

Mathematical justification: if you sample a training example at random, the
stochastic gradient is an unbiased estimate of the batch gradient:

Ei

[
∇J (i)(θ)

]
=

1

N

N∑
i=1

∇J (i)(θ) = ∇J (θ).
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Stochastic Gradient Descent

Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downhill on average.

batch gradient descent stochastic gradient descent
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Stochastic Gradient Descent

Problem: if we only look at one training example at a time, we can’t
exploit efficient vectorized operations.

Compromise approach: compute the gradients on a medium-sized
set of training examples, called a mini-batch.

Each entire pass over the dataset is called an epoch.

Stochastic gradients computed on larger mini-batches have smaller
variance:

Var

[
1

S

S∑
i=1

∂L(i)

∂θj

]
=

1

S2
Var

[
S∑

i=1

∂L(i)

∂θj

]
=

1

S
Var

[
∂L(i)

∂θj

]

The mini-batch size S is a hyperparameter. Typical values are 10 or
100.
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Stochastic Gradient Descent: Batch Size

The mini-batch size S is a hyperparameter that needs to be set.

Large batches: converge in fewer weight updates because each
stochastic gradient is less noisy.
Small batches: perform more weight updates per second because each
one requires less computation.

Claim: If the wall-clock time were proportional to the number of
FLOPs, then S = 1 would be optimal.

100 updates with S = 1 requires the same FLOP count as 1 update
with S = 100.
Rewrite minibatch gradient descent as a for-loop:

All else being equal, you’d prefer to compute the gradient at a fresher
value of θ. So S = 1 is better.
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Stochastic Gradient Descent: Batch Size

The reason we don’t use S = 1 is that larger batches can take
advantage of fast matrix operations and parallelism.

Small batches: An update with S = 10 isn’t much more expensive
than an update with S = 1.

Large batches: Once S is large enough to saturate the hardware
efficiencies, the cost becomes linear in S .

Cartoon figure, not drawn to scale:

Since GPUs afford more parallelism, they saturate at a larger batch
size. Hence, GPUs tend to favor larger batch sizes.
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Stochastic Gradient Descent: Batch Size

The convergence benefits of larger batches also see diminishing returns.

Small batches: large gradient noise, so large benefit from increased batch size

Large batches: SGD approximates the batch gradient descent update, so no
further benefit from variance reduction.

Right: # iterations to reach target validation error as a function of batch size.
(Shallue et al., 2018)
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SGD Learning Rate

In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

Typical strategy:

Use a large learning rate early in training so you can get close to the
optimum
Gradually decay the learning rate to reduce the fluctuations
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SGD Learning Rate

Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.
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RMSprop and Adam

Recall: SGD takes large steps in directions of high curvature and
small steps in directions of low curvature.

RMSprop is a variant of SGD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an
exponential moving average sj of the squared gradients.

The following update is applied to each coordinate j independently:

sj ← (1− γ)sj + γ[∂J∂θj ]2

θj ← θj −
α

√
sj + ε

∂J
∂θj

If the eigenvectors of the Hessian are axis-aligned (dubious
assumption), then RMSprop can correct for the curvature. In
practice, it typically works slightly better than SGD.

Adam = RMSprop + momentum

Both optimizers are included in TensorFlow, Pytorch, etc.
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Recap

Problem Diagnostics Workarounds
incorrect gradients finite differences fix them, or use autodiff

local optima (hard) random restarts
symmetries visualize W initialize W randomly

slow progress slow, linear training curve increase α; momentum
instability cost increases decrease α

oscillations fluctuations in training curve decrease α; momentum
fluctuations fluctuations in training curve decay α; iterate averaging

dead/saturated units activation histograms initial scale of W; ReLU
ill-conditioning (hard) normalization; momentum;

Adam; second-order opt.
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