CSC421/2516 Lecture 6:
Automatic Differentiation

Roger Grosse and Jimmy Ba

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 1/25

Overview

@ Implementing backprop by hand is like programming in assembly

language.
e You'll probably never do it, but it's important for having a mental
model of how everything works.

@ Lecture 4 covered the math of backprop, which you are using to code
it up for a particular network for Assignment 1

@ This lecture: how to build an automatic differentiation (autodiff)
library, so that you never have to write derivatives by hand

o We'll cover a simplified version of Autograd, a lightweight autodiff tool.
e PyTorch’s autodiff feature is based on very similar principles.

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 2/25

Confusing Terminology

e Automatic differentiation (autodiff) refers to a general way of taking
a program which computes a value, and automatically constructing a
procedure for computing derivatives of that value.

o In this lecture, we focus on reverse mode autodiff. There is also a
forward mode, which is for computing directional derivatives.

@ Backpropagation is the special case of autodiff applied to neural nets

e But in machine learning, we often use backprop synonymously with
autodiff

@ Autograd is the name of a particular autodiff package.

e But lots of people, including the PyTorch developers, got confused and
started using “autograd” to mean “autodiff”

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 3/25

N
What Autodiff Is Not: Finite Differences

@ We often use finite differences to check our gradient calculations.
@ One-sided version:

X1,y Xi+hyooo xn) = F(X1, ooy Xiy e ooy XN)

0
af(xl,.,.,xm)z b

@ Two-sided version:

1o} O, xi b oxw) = (x5 = hy o x)
aXif-(Xh...,XN) ~ >h

T T
— exact 1 '
— one-sided | i
— two-sided H '

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 4/25

N
What Autodiff Is Not: Finite Differences

@ Autodiff is not finite differences.
e Finite differences are expensive, since you need to do a forward pass for
each derivative.
o It also induces huge numerical error.
e Normally, we only use it for testing.
e Autodiff is both efficient (linear in the cost of computing the value)
and numerically stable.

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 5/25

-
What Autodiff Is Not: Symbolic Differentiation

e Autodiff is not symbolic differentiation (e.g. Mathematica).

e Symbolic differentiation can result in complex and redundant
expressions.
o Mathematica's derivatives for one layer of soft ReLU (univariate case):

D[Log[l + Exp[w#x +Db]], w]

eb-wx W
Out[11]=

1+ ebtvx

e Derivatives for two layers of soft ReLU:
miel- D[Log[l + Exp[w2 #Log[1l + Exp[wl#x +bl]] +b2]], wl]

. . N [14+pblwlx]
ebl b2+wlx WZLDg_] e w2 x

Oul[18]=

. [1,pblwlx]
(1+ebl-w1x) (1+e"2 w2log|lee)

e There might not be a convenient formula for the derivatives.

@ The goal of autodiff is not a formula, but a procedure for computing
derivatives.

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 6/25

What Autodiff Is

Recall how we computed the derivatives of logistic least squares regression.

An autodiff system should transform the left-hand side into the right-hand
side.

Computing the loss: Computing the derivatives:

z=wx-+b L
y =o0(2)

I Y
L=50—1)

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer

7/25

N
What Autodiff Is

@ An autodiff system will convert the program into a sequence of primitive
operations (ops) which have specified routines for computing derivatives.

@ In this representation, backprop can be done in a completely mechanical way.

Sequence of primitive operations:

tp = wx
Original program: 0t b
Z =1
z=wx-+b t3 = —z
y = 71 ty = exp(t3)
1+ exp(—2) =14t
1
5=§(y—t)2 y=1/ts
te =y —t
=t
L= t7/2

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 8/25

N
What Autodiff Is

import autograd.numpy as np
from autograd import grad very sneaky!

def sigmoid(x):
return 0.5%(np.tanh(x) + 1)

def logistic_predictions(weights, inputs):

Outputs probability of a label being true according to logistic model.

return sigmoid(np.dot(inputs, weights))

de

&

training_loss(weights):

Training loss is the negative log-likelihood of the training labels.

preds = logistic_predictions(weights, inputs)

label_probabilities = preds * targets + (1 - preds) * (1 - targets)

return -np.sum(np.log(label_probabilities))

... (load the data) ...

Define a function that returns gradients of training loss using Autograd.

training_gradient_fun = grad(training_loss)

¥~ Autograd constructs a
function for computing derivatives

Optimize weights using gradient descent.
weights = np.array([0.0, 0.0, 0.0])
print "Initial loss:", training_loss(weights)
for i in xrange(100):
weights -= training_gradient_fun(weights) * 0.01

print "Trained loss:", training_loss(weights)

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer

9/25

-
Autograd

@ The rest of this lecture covers how Autograd is implemented.
@ Source code for the original Autograd package:
e https://github.com/HIPS/autograd

o Autodidact, a pedagogical implementation of Autograd — you are
encouraged to read the code.

e https://github.com/mattjj/autodidact
e Thanks to Matt Johnson for providing this!

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 10/25

https://github.com/HIPS/autograd
https://github.com/mattjj/autodidact

-
Building the Computation Graph

w w®)
X—7Z—h—Y—/[
b® b®

@ Most autodiff systems, including Autograd, explicitly construct the
computation graph.
@ Some frameworks like TensorFlow provide mini-languages for building
computation graphs directly. Disadvantage: need to learn a totally new API.
o Autograd instead builds them by tracing the forward pass computation,
allowing for an interface nearly indistinguishable from NumPy.
@ The Node class (defined in tracer.py) represents a node of the
computation graph. It has attributes:
e value, the actual value computed on a particular set of inputs
o fun, the primitive operation defining the node
o args and kwargs, the arguments the op was called with
@ parents, the parent Nodes

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 11/25

-
Building the Computation Graph

@ Autograd’s fake NumPy module provides primitive ops which look and
feel like NumPy functions, but secretly build the computation graph.

@ They wrap around NumPy functions:

function: F
parents: [X]

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer

primitive

autograd.numpy.sum

unbox

numpy . sum

box

function: anp.sum
parents: [a]

12/25

-
Building the Computation Graph

Example:

def logistic(z):
return 1. / (1. + np.exp(-z))

that 1is equivalent to:
def logistic2(z):
return np.reciprocal(np.add(1l, np.exp(np.negative(z))))

z=1.5
= logistic(z)
node z node t1 node t2 node t3 node y
value: 1.5 value: -1.5 value: 0.223 value: 1.223 value: 0.818
function: None function: negative function: exp function: add function: reciprocal
parents: [| parents: [z] parents: [t1] parents: [t2] parents: [t3]

/

1

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 13/25

Recap: Vector-Jacobian Products

@ Recall: the Jacobian is the matrix of partial derivatives:

v ... n
Ox1 Oxp
dy : .
J = — =
ox . : .
m .. OYm
Ox1 Oxp

@ The backprop equation (single child node) can be written as a
vector-Jacobian product (VJP):

— __ Oy o T
Xj=) Vi x=y J
2o
@ That gives a row vector. We can treat it as a column vector by taking

x=JTy

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 14 /25

Recap: Vector-Jacobian Products

Examples
@ Matrix-vector product

z=Wx J=W x=W'z
@ Elementwise operations

exp(z1) 0
y=epz) J= 7= exp(2) o
0 exp(zp)

o Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the VJP directly.

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 15/25

-
Backprop as Message Passing

o Consider a naive backprop implementation where the z module needs
to compute Z using the formula:

@ This breaks modularity, since z needs to know how it's used in the
network in order to compute partial derivatives of r, s, and t.

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 16 /25

Backprop as Message Passing

Backprop as message passing:
@ Each node receives a bunch
of messages from its
children, which it aggregates
to get its error signal. It
then passes messages to its
parents.

@ Each of these messages is a VJP.

@ This formulation provides modularity: each node needs to know how
to compute its outgoing messages, i.e. the VJPs corresponding to
each of its parents (arguments to the function).

@ The implementation of z doesn't need to know where Z came from.

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 17 /25

Vector-Jacobian Products

@ For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).

@ This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient (X)

@ defvjp (defined in core.py) is a convenience routine for registering
VJPs. It just adds them to a dict.

o Examples from numpy/numpy_vjps.py

defvjp(negative, lambda g, ans, x: -g)

defvip(exp, lambda g, ans, x: ans * g)
defvip(log, lambda g, ans, x: g / x)
defvijp(add, lambda g, ans, x, : g,

Y
lambda g, ans, x, y :
defvip(multiply, lambda g, ans, x, ¥ : ¥y * g,
lambda g, ans, x, y :
defvijp(subtract, lambda g, ans, x, ¥y
lambda g, ans, x, y

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 18 /25

Backward Pass

@ The backwards pass is defined in core.py.
@ The argument g is the error signal for the end node; for us this is always £ = 1.

def backward_pass(g, end_node):
outgrads = {end_node: g}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
fun, value, args, kwargs, argnums = node.recipe
for argnum, parent in zip(argnums, node.parents):
vjp = primitive_vjps[funl] [argnum]
parent_grad = vjp(outgrad, value, xargs, *xkwargs)
outgrads [parent] = add_outgrads(outgrads.get(parent), parent_grad)

return outgrad

def add_outgrads(prev_g, g):
if prev_g is None:
return g
return prev_g + g

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 19/25

Backward Pass

@ grad (in differential_operators.py) is just a wrapper around make_vjp (in
core.py) which builds the computation graph and feeds it to backward_pass.
@ grad itself is viewed as a VJP, if we treat £ as the 1 x 1 matrix with entry 1.

def

def

oL oL —
w - ow”

make_vip(fun, x):
"""Trace the computation to build the computation graph, and return
a function which implements the backward pass."""
start_node = Node.new_root()
end_value, end node = trace(start_node, fun, x)
def vip(g):
return backward_pass(g, end_node)
return vip, end_value

grad(fun, argnum=@):

def gradfun(*args, **kwargs):
unary_fun = lambda x: fun(*subwal(args, argnum, x), **kwargs)
vip, ans = make_vip(unary_fun, args[argnum])
return vjp(np.ones_likeCans))

return gradfun

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 20/25

Recap

@ We saw three main parts to the code:

e tracing the forward pass to build the computation graph
e vector-Jacobian products for primitive ops
e the backwards pass

@ Building the computation graph requires fancy NumPy gymnastics,
but other two items are basically what | showed you.

@ You're encouraged to read the full code (< 200 lines!) at:

https://github.com/mattjj/autodidact/tree/master/autograd

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 21/25

https://github.com/mattjj/autodidact/tree/master/autograd

Differentiating through a Fluid Simulation

def project(vx, vy):

Project the velocity field to be approximately mass—conserving,

using a few iterations of Gauss—Seidel.

np.zeros(vx.shape)

.0/vx.shape [0]

= -0.5 * h * (np.roll(vx, -1, axis=0) - mp.roll(wx, 1,
+ mp.roll(vy, -1, axis=1) - mp.roll(vy, 1,

for k in ranmge (10):

p = (div + mp.roll(p, 1, axis=0) + np.roll(p, -1, axi
+ mp.roll(p, 1, axis=1) + np.roll(p,
vx -= 0.5%(nmp.roll(p, -1, axis=0) - mp.roll(p, 1,
vy -= 0.5%(mp.7oll(p, -1, axis=1) - mp.roll(p, 1,

return vx, vy

def advect(f, vx, vy):
Move eld f accord
using an implicit Euler integrator.
rows, cols = f.shape
cell_ys, cell_xs = np.meshgrid(np.arange(rows),
np.arange (cols))
(cell_xs - vx).ravel()
= (cell_ys - vy).ravel()

g to x and y velocities (u and v)

center_xs
center_ys

Compute indices of source cells.
left_ix = mp.floor(center_xs).astype(int)
top_ix = mp.floor(center_ys).astype(int)
rv = center_xs - left_ix

bw = center_ys - top_ix

left_ix = np.mod(left_ix, rows)
right_ix = np.mod(left_ix + 1, rows)
top_ix = np.mod(top_ix, cols)
bot_ix = mp.mod(top_ix + 1, cols)

flat_f = (1 - Tw) * ((1 - bw)*f[left_ix, top_ix] \
+ buef[left_ix, bot_ix]) \
+# rw x ((1 - bw)#f[right_ix, top_ix] \
+ butf[right_ bot_ix])
return np.reshape(flat_f, (rows, cols))

def simulate(vx, vy, smoke, num_time_steps):
for t in range (num_time_steps):
vx_updated = advect(vx, vx, vy)
vy_updated = advect(vy, vx, vy)
vx, vy = project(vx_updated, vy_updated)
smoke = advect(smoke, vk, vy
return smoke, frame_list

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer

axis=0)
axis=1))

22 /25

-
Differentiating through a Fluid Simulation

https://github.com/HIPS/autograd#end-to-end-examples

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 23 /25

https://github.com/HIPS/autograd#end-to-end-examples

|
Gradient-Based Hyperparameter Optimization

gradient

descent | init® |

o ¥

loss
grad

regularization params — Y
update J VL
step

optimization params ——

training data ——

¢] i

validation data —> loss

grad
Y

updateJ VL
step
validation -
> L
O¢inal set error

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 24 /25

|
Gradient-Based Hyperparameter Optimization

P(digit | image)

Learning rate
O = N W U3 N

20 40 60 80 100
Schedule index

o

j

Roger Grosse and Jimmy Ba (CSC421/2516 Lecture 6: Automatic Differer 25/25

