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Overview

Recall the simple neuron-like unit:

Linear regression and logistic regression can each be viewed as a
single unit.

These units are much more powerful if we connect many of them into
a neural network.
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Limits of Linear Classification

Single neurons (linear classifiers) are very limited in expressive power.

XOR is a classic example of a function that’s not linearly separable.

There’s an elegant proof using convexity.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 3: Multilayer Perceptrons 3 / 25



Limits of Linear Classification

Convex Sets

A set S is convex if any line segment connecting points in S lies
entirely within S. Mathematically,

x1, x2 ∈ S =⇒ λx1 + (1− λ)x2 ∈ S for 0 ≤ λ ≤ 1.

A simple inductive argument shows that for x1, . . . , xN ∈ S, weighted
averages, or convex combinations, lie within the set:

λ1x1 + · · ·+ λNxN ∈ S for λi > 0, λ1 + · · ·λN = 1.
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Limits of Linear Classification

Showing that XOR is not linearly separable

Half-spaces are obviously convex.

Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

Similarly, the red line segment must line within the negative half-space.

But the intersection can’t lie in both half-spaces. Contradiction!
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Limits of Linear Classification

A more troubling example

Discriminating simple patterns  
under translation with wrap-around 

•  Suppose we just use pixels as 
the features. 

•  Can a binary threshold unit 
discriminate between different 
patterns that have the same 
number of on pixels? 
–  Not if the patterns can 

translate with wrap-around! 
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These images represent 16-dimensional vectors. White = 0, black = 1.

Want to distinguish patterns A and B in all possible translations (with
wrap-around)

Translation invariance is commonly desired in vision!

Suppose there’s a feasible solution. The average of all translations of A is the
vector (0.25, 0.25, . . . , 0.25). Therefore, this point must be classified as A.

Similarly, the average of all translations of B is also (0.25, 0.25, . . . , 0.25).
Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton
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Limits of Linear Classification

Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

ψ(x) =

 x1

x2

x1x2


x1 x2 φ1(x) φ2(x) φ3(x) t

0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This is linearly separable. (Try it!)

Not a general solution: it can be hard to pick good basis functions.
Instead, we’ll use neural nets to learn nonlinear hypotheses directly.
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Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic graph.

This gives a feed-forward
neural network. That’s
in contrast to recurrent
neural networks, which
can have cycles. (We’ll
talk about those later.)

Typically, units are
grouped together into
layers.
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Multilayer Perceptrons

Each layer connects N input units to M output units.

In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We’ll consider other layer types later.

Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

Recall from softmax regression: this means we
need an M × N weight matrix.

The output units are a function of the input
units:

y = f (x) = φ (Wx + b)

A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!
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Multilayer Perceptrons

Some activation functions:

Linear

y = z

Rectified Linear Unit
(ReLU)

y = max(0, z)

Soft ReLU

y = log 1 + ez
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Multilayer Perceptrons

Some activation functions:

Hard Threshold

y =

{
1 if z > 0
0 if z ≤ 0

Logistic

y =
1

1 + e−z

Hyperbolic Tangent
(tanh)

y =
ez − e−z

ez + e−z
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Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function
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Multilayer Perceptrons
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Multilayer Perceptrons

Each layer computes a function, so the network
computes a composition of functions:

h(1) = f (1)(x)

h(2) = f (2)(h(1))

...

y = f (L)(h(L−1))

Or more simply:

y = f (L) ◦ · · · ◦ f (1)(x).

Neural nets provide modularity: we can implement
each layer’s computations as a black box.
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Feature Learning

Neural nets can be viewed as a way of learning features:

The goal:
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Feature Learning

Input representation of a digit : 784 dimensional vector.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 3: Multilayer Perceptrons 16 / 25



Feature Learning

Each first-layer hidden unit computes σ(wT
i x)

Here is one of the weight vectors (also called a feature).

It’s reshaped into an image, with gray = 0, white = +, black = -.

To compute wT
i x, multiply the corresponding pixels, and sum the result.
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Feature Learning

There are 256 first-level features total. Here are some of them.
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Levels of Abstraction

The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the

small and to see something in the large.

– Don Knuth
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Levels of Abstraction

When you design neural networks and machine learning algorithms, you’ll
need to think at multiple levels of abstraction.

Roger Grosse and Jimmy Ba CSC421/2516 Lecture 3: Multilayer Perceptrons 20 / 25



Expressive Power

We’ve seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

Any sequence of linear layers can be equivalently represented with a
single linear layer.

y = W(3)W(2)W(1)︸ ︷︷ ︸
,W′

x

Deep linear networks are no more expressive than linear regression!
Linear layers do have their uses — stay tuned!
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Expressive Power

Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.

This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

Even though ReLU is “almost” linear, it’s nonlinear enough!
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Expressive Power

Universality for binary inputs and targets:

Hard threshold hidden units, linear output

Strategy: 2D hidden units, each of which responds to one particular
input configuration

Only requires one hidden layer, though it needs to be extremely wide!
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Expressive Power

What about the logistic activation function?

You can approximate a hard threshold by scaling up the weights and
biases:

y = σ(x) y = σ(5x)

This is good: logistic units are differentiable, so we can tune them
with gradient descent. (Stay tuned!)
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Expressive Power

Limits of universality

You may need to represent an exponentially large network.
If you can learn any function, you’ll just overfit.
Really, we desire a compact representation!

We’ve derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

This suggests you might be able to learn compact representations of
some complicated functions
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