CSC421 Lecture 1: Introduction

Roger Grosse and Jimmy Ba

- Second course in machine learning, with a focus on neural networks
 - Replaces CSC321; similar content, but less introductory material and more cutting-edge topics
 - Assumes knowledge of basic ML algorithms: linear regression, logistic regression, maximum likelihood, PCA, EM, etc.
 - First 2/3: supervised learning
 - Last 1/3: unsupervised learning and reinforcement learning
- Two sections
 - Equivalent content, same assignments and exams

- Formal prerequisites:
 - Multivariable Calculus: MAT235/MAT237/MAT257
 - Linear Algebra: MAT221H1/MAT223H1/MAT240H1
 - Machine Learning: CSC411/STA314
- Prerequisites will be enforced, including for grad students.

- Expectations and marking (undergrads)
 - Written homeworks (20% of total mark)
 - Due Wednesday nights at 11:59pm, starting 1/24
 - 2-3 short conceptual questions
 - Use material covered up through Tuesday of the preceding week
 - 4 programming assignments (30% of total mark)
 - Python, PyTorch
 - 10-15 lines of code
 - may also involve some mathematical derivations
 - give you a chance to experiment with the algorithms
 - Exams
 - midterm (15%)
 - final (35%)
- See Course Information handout for detailed policies

- Expectations and marking (grad students)
 - Same as undergrads:
 - Written homeworks: 20%
 - Programming assignments: 30%
 - Midterm: 15%
 - Final project: 35%
- See Course Information handout for detailed policies

How to get free GPUs

- Colab (Recommended) Google Colab is a web-based iPython Notebook service that has access to a free Nvidia K80 GPU per Google account.
- **GCE** (Recommended) Google Compute Engine delivers virtual machines running in Google's data center. You get \$300 free credit when you sign up.
- CS Teaching Lab There are some very old GPUs in our CS Teaching Labs / CDF labs
- See Course Information handout for the details

Course web page:

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/

Includes detailed course information handout

- For many problems, it's difficult to program the correct behavior by hand
 - recognizing people and objects
 - understanding human speech

- For many problems, it's difficult to program the correct behavior by hand
 - recognizing people and objects
 - understanding human speech
- Machine learning approach: program an algorithm to automatically learn from data, or from experience

- For many problems, it's difficult to program the correct behavior by hand
 - recognizing people and objects
 - understanding human speech
- Machine learning approach: program an algorithm to automatically learn from data, or from experience
- Some reasons you might want to use a learning algorithm:
 - hard to code up a solution by hand (e.g. vision, speech)
 - system needs to adapt to a changing environment (e.g. spam detection)
 - want the system to perform better than the human programmers
 - privacy/fairness (e.g. ranking search results)

- Types of machine learning
 - Supervised learning: have labeled examples of the correct behavior
 - **Reinforcement learning:** learning system receives a reward signal, tries to learn to maximize the reward signal
 - **Unsupervised learning:** no labeled examples instead, looking for interesting patterns in the data

Supervised learning: have labeled examples of the correct behavior

- e.g. Handwritten digit classification with the MNIST dataset
 - Task: given an image of a handwritten digit, predict the digit class
 - Input: the image
 - Target: the digit class

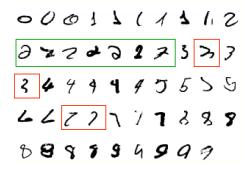
Supervised learning: have labeled examples of the correct behavior

- e.g. Handwritten digit classification with the MNIST dataset
 - Task: given an image of a handwritten digit, predict the digit class
 - Input: the image
 - Target: the digit class
 - Data: 70,000 images of handwritten digits labeled by humans
 - Training set: first 60,000 images, used to train the network
 - **Test set:** last 10,000 images, not available during training, used to evaluate performance

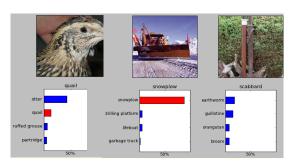
Supervised learning: have labeled examples of the correct behavior

- e.g. Handwritten digit classification with the MNIST dataset
 - Task: given an image of a handwritten digit, predict the digit class
 - Input: the image
 - Target: the digit class
 - Data: 70,000 images of handwritten digits labeled by humans
 - Training set: first 60,000 images, used to train the network
 - **Test set:** last 10,000 images, not available during training, used to evaluate performance
 - This dataset is the "fruit fly" of neural net research
 - Neural nets already achieved > 99% accuracy in the 1990s, but we still continue to learn a lot from it

What makes a "2"?



Object recognition

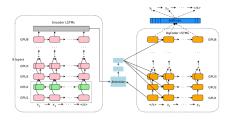


(Krizhevsky and Hinton, 2012)

ImageNet dataset: thousands of categories, millions of labeled images Lots of variability in viewpoint, lighting, etc.

Error rate dropped from 26% to under 4% over the course of a few years!

Neural Machine Translation

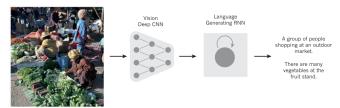


(Wu et al., 2016)

Input sentence:	Translation (PBMT):	Translation (GNMT):	Translation (human):
李克強此行將啟動中加 總理年度對話機制,與 加拿大總理杜魯多舉行 兩國總理首次年度對 話。	Li Keqiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.	Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

Now the production model on Google Translate

Caption generation



A woman is throwing a **frisbee** in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

(Xu et al., 2015)

Given: dataset of Flickr images with captions

More examples at http://deeplearning.cs.toronto.edu/i2t

- In generative modeling, we want to learn a distribution over some dataset, such as natural images.
- We can evaluate a generative model by sampling from the model and seeing
 if it looks like the data.
- These results were considered impressive in 2014:

Denton et al., 2014, Deep generative image models using a Laplacian pyramid of adversarial networks

• Fast-forward to 2017:

CSC421 Lecture 1: Introduction

• The progress of generative models:

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

 Recent exciting result: a model called the CycleGAN takes lots of images of one category (e.g. horses) and lots of images of another category (e.g. zebras) and learns to translate between them.

Reinforcement learning

- An agent interacts with an environment (e.g. game of Breakout)
- In each time step,
 - the agent receives **observations** (e.g. pixels) which give it information about the **state** (e.g. positions of the ball and paddle)
 - the agent picks an action (e.g. keystrokes) which affects the state
- The agent periodically receives a reward (e.g. points)
- The agent wants to learn a policy, or mapping from observations to actions, which maximizes its average reward over time

Reinforcement learning

DeepMind trained neural networks to play many different Atari games

- given the raw screen as input, plus the score as a reward
- single network architecture shared between all the games
- in many cases, the networks learned to play better than humans (in terms of points in the first minute)

https://www.youtube.com/watch?v=V1eYniJORnk

Reinforcement learning for control

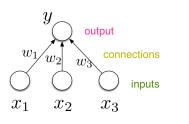
Learning locomotion control from scratch

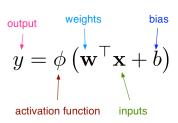
- The reward is to run as far as possible over all the obstacles
- single control policy that learns to adapt to different terrains

https://www.youtube.com/watch?v=hx_bgoTF7bs

What are neural networks?

- Most of the biological details aren't essential, so we use vastly simplified models of neurons.
- While neural nets originally drew inspiration from the brain, nowadays we mostly think about math, statistics, etc.





• Neural networks are collections of thousands (or millions) of these simple processing units that together perform useful computations.

What are neural networks?

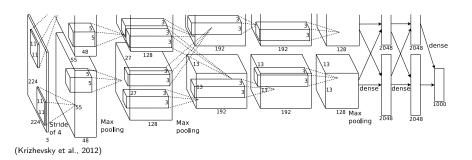
Why neural nets?

- inspiration from the brain
 - proof of concept that a neural architecture can see and hear!
- very effective across a range of applications (vision, text, speech, medicine, robotics, etc.)
- widely used in both academia and the tech industry
- powerful software frameworks (PyTorch, TensorFlow, etc.) let us quickly implement sophisticated algorithms

"Deep learning"

Deep learning: many layers (stages) of processing

E.g. this network which recognizes objects in images:



Each of the boxes consists of many neuron-like units similar to the one on the previous slide!

"Deep learning"

- You can visualize what a learned feature is responding to by finding an image that excites it. (We'll see how to do this.)
- Higher layers in the network often learn higher-level, more interpretable representations

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

"Deep learning"

- You can visualize what a learned feature is responding to by finding an image that excites it.
- Higher layers in the network often learn higher-level, more interpretable representations

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

Software frameworks

- Array processing (NumPy)
 - vectorize computations (express them in terms of matrix/vector operations) to exploit hardware efficiency
- Neural net frameworks: PyTorch, TensorFlow, etc.
 - automatic differentiation
 - compiling computation graphs
 - libraries of algorithms and network primitives
 - support for graphics processing units (GPUs)
- For this course:
 - Python, NumPy
 - Autograd, a lightweight automatic differentiation package written by Professor David Duvenaud and colleagues
 - PyTorch, a widely used neural net framework

Software frameworks

Why take this class, if PyTorch does so much for you?

So you know what do to if something goes wrong!

- Debugging learning algorithms requires sophisticated detective work, which requires understanding what goes on beneath the hood.
- That's why we derive things by hand in this class!