
Midterm for CSC421/2516,
Neural Networks and Deep Learning

Winter 2019
Friday, Feb. 15, 6:10-7:40pm

Name:

Student number:

This is a closed-book test. It is marked out of 15 marks. Please answer
ALL of the questions. Here is some advice:

• The questions are NOT arranged in order of difficulty, so you should
attempt every question.

• Questions that ask you to “briefly explain” something only require short
(1-3 sentence) explanations. Don’t write a full page of text. We’re just
looking for the main idea.

• None of the questions require long derivations. If you find yourself plug-
ging through lots of equations, consider giving less detail or moving on
to the next question.

• Many questions have more than one right answer.

CSC421/2516 Winter 2019 Midterm Test

.

Q1: / 1
Q2: / 1
Q3: / 1
Q4: / 2
Q5: / 1
Q6: / 1
Q7: / 3
Q8: / 2
Q9: / 3

Final mark: / 15

2

CSC421/2516 Winter 2019 Midterm Test

1. [1pt] In our discussion of language modeling, we used the following model for the
probability of a sentence.

p(w1, . . . , wT) = p(w1) p(w2 |w1) · · · p(wT |w1, . . . , wT−1) (step 1)

p(wt |w1, . . . , wt−1) = p(wt |wt−3, wt−2, wt−1) (step 2)

For each of the two steps, say what assumptions (if any) must be made about the
distribution of sentences in order for that step to be valid. (You may assume that all
the necessary conditional distributions are well-defined.)

Step 1: No assumption or chain rule of probability.

Marking: (+0.5) for correct answer. Answers that mentioned axioms of probability
also were given full marks.

Step 2: Markov assumption (of order three).

Marking: (+0.5) for correct answer. Answers that explained Markov assumption in
words were also given full marks.

Mean: 0.70/1

2. [1pt] Consider the following binary classiciation problem from Lecture 3, which we
showed was impossible for a linear classifier to solve.

The training set consists of patterns A and B in all possible translations, with wrap-
around. Consider a neural network that consists of a 1D convolution layer with a
linear activation function, followed by a linear layer with a logistic output. Can such
an architecture perfectly classify all of the training examples? Why or why not?

No. Convolution layers are linear, and any composition of linear layers is still linear.
We showed the classes are not linearly separable.

Marking: (+0.5) Correct answer and partial justification. (+0.5) Correct justifica-
tion. A complete answer includes mention of the whole neural network computing a
linear function up to the final non-linearity and the data being linearly inseparable.

Mean: 0.62/1

3

CSC421/2516 Winter 2019 Midterm Test

3. [1pt] Recall that autograd.numpy.dot does some additional work that numpy.dot

does not need to do. Briefly describe the additional work it is doing. You may want
to refer to the inputs and outputs to autograd.numpy.dot.

In addition, autograd.numpy.dot add a node to the computation graph and stores its
actual input and output value during the forward computation.

Marking: Full marks were given to most students for mentioning the construction of
a computation graph. (-0.5) marks for being too vague and just mentioning keywords.
(-1) marks off for saying something incorrect.

Mean: 0.84/1

4. [2pts] Recall the following plot of the number of stochastic gradient descent (SGD)
iterations required to reach a given loss, as a function of the batch size:

.

(a) [1pt] For small batch sizes, the number of iterations required to reach the target
loss decreases as the batch size increases. Why is that?

Larger batch sizes reduces the variance in the gradient estimation of SGD. Hence,
larger batch converges faster than smaller batch.

Marking: Most mentions of variance or noise being decreased were sufficient
to get full marks for this question. (-1) for not mentioning anything regarding
noise/variance or accuracy of gradient estimate given by SGD.

4

CSC421/2516 Winter 2019 Midterm Test

(b) [1pt] For large batch sizes, the number of iterations does not change much as the
batch size is increased. Why is that?

As the batch size grows larger, SGD effectively becomes full batch gradient de-
scent.

Marking: Full marks given for mentioning that large batches approximate full-
batch gradient descent, so not much noise to be reduced in gradient estimation.
(-1) if answer has no mention of full-batch gradient descent, (-0.5) if answer is
vague.

Mean: 1.00/2

5

CSC421/2516 Winter 2019 Midterm Test

5. [1pt] Suppose we are doing gradient descent on a quadratic objective:

J (θ) =
1

2
θ>Aθ

We showed that the dynamics of gradient descent with learning rate α could be ana-
lyzed in terms of the spectral decomposition A = QΛQ>, where Q is an orthogonal
matrix containing the eigenvectors of A, and Λ = diag(λ1, . . . , λD) is a diagonal matrix
containing the eigenvalues of A in ascending order.

θt = Q(I− αΛ)tQ>θ0.

Based on this formula, what is the value C such that the gradient descent iterates
diverge for α > C but converge for α < C? Briefly justify your answer.

|1− αλmax| < 1

α <
2

λmax

Marking: 0.5 if 1
λmax

. 0.5 if no derivation is given in the justification.

Mean: 0.40/1

6. [1pt] Consider the GloVe cost function, in terms of matrices R and R̃ containing word
embeddings {ri}, {r̃j}

J (R, R̃) =
∑
i,j

f(xij)(r
>
i r̃j − log xij)

2.

(We left out the bias parameters for simplicity.) Show that this cost function is not con-
vex, using a similar argument to how we showed that training a multilayer perceptron
is not convex.

This is a non-convex cost function.

Solution 1: When we permute the dimensions of the embedding vectors in R and R̃
jointly, the cost function remains the same. To show convexity does not apply here, we
can take the average of these permuted embedding vectors. The resulting embedding
vectors will have all the same value for all the dimension, which will almost surely
have a higher cost than the learnt embedding vectors. (Note: as an alternative to
permutation symmetry, you can simply replace R with −R and R̃ with −R̃.)

6

CSC421/2516 Winter 2019 Midterm Test

Solution 2: We can interchange R and R̃ directly and the cost function will remain
the same. If we average the two embedding matrix R+R̃

2
, we will have the same word

embedding vector for both matrices, which will have higher cost than the original cost
function. It is because the highest occurance will always be the inner product of the
words with itself.

Marking: 0.5 for noting the swap-invariance or permutation-invariance. 0.5 for ap-
plying the invariance to get the average of solutions.

Mean: 0.32/1

7

CSC421/2516 Winter 2019 Midterm Test

7. [3pts] Recall that the softmax function takes in a vector (z1, . . . , zD) and returns a
vector (y1, . . . , yD). We can express it in the following form:

r =
∑
j

ezj yi =
ezi

r

(a) [1pt] Consider D = 2, i.e. just two inputs and outputs to the softmax. Draw the
computation graph relating z1, z2, r, y1, and y2.

z1

z2

y1

y2

r

Marking: (+0.5) for having all nodes. (+0.5) for having all edges.

(b) [1pt] Determine the backprop updates for computing the zj when given the yi.
You do not need to justify your answer. (You may give your answer either for
D = 2 or for the more general case.)

r = −
∑
i

yi
ezi

r2

zj = yj
ezj

r
+ rezj

Marking: (+0.5) for each equation. Common mistakes were missing the partial
derivative from ȳj for z̄j or missing the summation for r̄.

(c) [1pt] Write a function to implement the vector-Jacobian product (VJP) for the
softmax function based on your answer from part (b). For efficiency, it should
operate on a mini-batch. The inputs are:

• a matrix Z of size N × D giving a batch of input vectors. N is the batch
size and D is the number of dimensions. Each row gives one input vector
z = (z1, . . . , zD).

• A matrix Y_bar giving the output error signals. It is also N ×D.

8

CSC421/2516 Winter 2019 Midterm Test

The output should be the error signal Z_bar. Do not use a for loop.

def softmax_vjp(Z, Y_bar):

R = np.sum(np.exp(Z), axis = 1, keepdims=True)

R_bar = -np.sum(Y_bar * np.exp(Z), axis=1, keepdims=True)/R**2

Z_bar = Y_bar * (np.exp(Z)/R) + R_bar * np.exp(Z)

return Z_bar

Marking: Full marks were given if the general proecdure is correct, without
taking into account the keyword arguments axis and keepdims. Otherwise (-0.5)
for every mistake. Most common mistake was using the matrix multiplication
operation np.dot as either element-wise multiplication, or using it instead of
np.inner.

Mean: 2.23/3

9

CSC421/2516 Winter 2019 Midterm Test

8. [2pts] In this question, you will design a convolutional network to detect vertical
boundaries in an image. The architecture of the network is as shown on the right.

The ReLU activation function is applied to the
first convolution layer. The output layer uses
the linear activation function.

For this question, you may assume either the
standard definition of convolution (which flips
and filters) or the version used in conv nets
(which skips the filtering step). Conveniently,
the same answer works either way.

In order to make the figure printable for the
exam paper, we use white to denote 0 and
darker values to denote larger (more positive)
values.

(a) [1pt] Design two convolution kernels for the first layer, of size 3 × 3. One of
them should detect dark/light boundaries, and the other should detect light/dark
boundaries. (It doesn’t matter which is which.) You don’t need to justify your
answer.

Marking: (+0.5) for a kernel that has a positive gradient in the left-right direc-
tion. (+0.5) for a kernel that has a negative gradient in the left-right direction.
Answers that satisfied the above criteria but weren’t horizontally symmetric were
given partial marks.

10

CSC421/2516 Winter 2019 Midterm Test

(b) [1pt] Design convolution kernels of size 3×3 for the output layer, which computes
the desired output. You don’t need to justify your answer.

Marking: (+1) for any two kernels that add the feature maps from the previous
layer. Kernels that do this while inadvertently blurring the image were also given
full marks.

Mean: 1.60/2

11

CSC421/2516 Winter 2019 Midterm Test

9. [3pts] Recall the logistic activation function σ and the tanh activation function:

σ(z) =
1

1 + e−z

tanh(z) =
ez − e−z

ez + e−z

Both activation functions have a sigmoidal shape.

(a) [1pt] Give the Jacobian matrix ∂y/∂z of the tanh activation function, applied
elementwise to all of the units in a layer. You may give your answer in terms of
tanh′(z), the univariate derivative of the tanh function.
∂Y
∂Z

is a diagonal matrix, where tanh′(zi) are the terms along the diagonal.

Marking:

• 1/1 for giving the correct Jacobian matrix. Any valid notation is fine; mainly

drawing out the matrix or giving an equation for
∂yj
∂zi

• 0.5/1 if the answer demonstrated an understanding of roughly the correct
solution (diagonal matrix with tanh(zi) along diagonal) but made small errors
or omissions.

• 0/1 For anything else, including for a vector of tanh(zi)

(b) [1pt] One of the difficulties with the logistic activation function is that of satu-
rated units. Briefly explain the problem, and whether switching to tanh fixes the
problem. (You may refer to your answer from part (a) or sketch the activation
functions.)

No, switching to tanh does not fix the problem. The derivative of σ(z) is small for
large negtive or positive z. The same problem persists in tanh(z). Both function
has a sigmoidal shape. We can see tanh is effectively a scaled and translated
sigmoid function: tanh(z) = 2σ(2z)− 1

Marking: Half a point for an explanation of the problem and half a point for
whether switching to tanh fixes the problem.

• Explanation: 0.5/0.5 for a correct explanation with relevant details about
saturation A description of saturation or its effect on optimization are both
OK.

• Explanation: 0/0.5 for an incorrect explanation or if the explanation demon-
strated incorrect understanding, even if parts were correct.

12

CSC421/2516 Winter 2019 Midterm Test

• Switching to tanh: 0.5/0.5 for a “no” answer (or an explanation that obviously
implies “no” if yes/no is not explicitly stated).

(c) [1pt] Briefly explain one way in which using tanh instead of logistic activations
makes optimization easier.

tanh activations are centered around zero, whereas sigmoid are centered around
0.5. Centering the data/hidden activation can help optimization due to similar
effect to the batch normalization without the variance division.

Marking:

• 1/1 for a factually correct explanation concerning normalization or centering
the data abount 0.

• 0.5/1 or 1/1 for a factually correct description of some property that is plau-
sibly relevant to the ease of optimization. Depends on the depth of reasoning,
demonstrated understanding, and relevance to optimization ease.

• 0/1 if the answer makes factually incorrect claims or does not describe some-
thing that would make optimization easier.

Mean: 1.45/3

13

CSC421/2516 Winter 2019 Midterm Test

(Scratch work or continued answers)

14

