CSC411: Final Review

James Lucas & David Madras

December 3, 2018

Agenda

- 1. A brief overview
- 2. Some sample questions

Basic ML Terminology

The final exam will be on the entire course; however, it will be more heavily weighted towards post-midterm material. For pre-midterm material, refer to the midterm review slides on the course website.

- Feed-forward Neural Network (NN)
- Activation Function
- Backpropagation
- Fully-connected vs. convolutional NN
- Dimensionality Reduction
- Principal Component Analysis (PCA)

- Autoencoder
- Generative vs.
 Discriminative Classifiers
- Naive Bayes
- Bayesian parameter estimation
- Prior/posterior distributions
- Gaussian Discriminant Analysis (GDA)

Basic ML Terminology

The final exam will be on the entire course; however, it will be more heavily weighted towards post-midterm material. For pre-midterm material, refer to the midterm review slides on the course website.

- K-Means (hard and soft)
- Latent variable/factor models
- Clustering
- Gaussian Mixture Model (GMM)
- Expectation-Maximization (EM) algorithm
- Jensen's Inequality

- Matrix factorization
- Matrix completion
- Gaussian Processes
- Kernel trick
- Reinforcement learning
- States/actions/rewards
- Exploration/exploitation

Question 1

True or False:

- 1. PCA always uses an invertible linear map
- 2. K-Means will always find the global minimum
- 3. Naive Bayes assumes that all features are independent

Question 1

True or False:

- 1. PCA always uses an invertible linear map False
- 2. K-Means will always find the global minimum False
- 3. Naive Bayes assumes that all features are independent *False*

Question 1

True or False:

- 1. PCA always uses an invertible linear map False
- 2. K-Means will always find the global minimum False
- 3. Naive Bayes assumes that all features are independent *False*

Question 2

1. How can a generative model $p(\mathbf{x}|y)$ be used as a classifier?

Question 1

True or False:

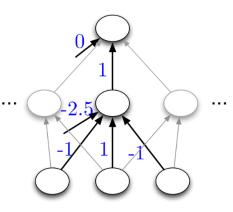
- 1. PCA always uses an invertible linear map False
- 2. K-Means will always find the global minimum False
- 3. Naive Bayes assumes that all features are independent *False*

Question 2

- 1. How can a generative model $p(\mathbf{x}|y)$ be used as a classifier?
- 2. Give one advantage of Bayesian linear regression over ML linear regression. Give a disadvantage.

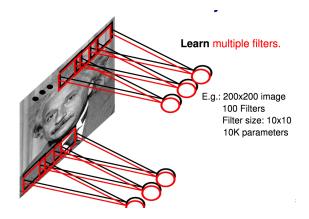
- 1. Neural Networks
- 2. PCA
- 3. Probabalistic Models
- 4. Latent Variable Models
- 5. Bayesian Learning
- 6. Reinforcement Learning

- 1. Weights and neurons
- 2. Activation functions
- 3. Depth and expressive power
- 4. Backpropagation



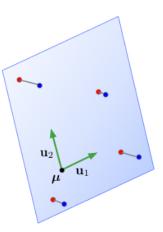
Convolutional Neural Networks

- 1. Convolutional neural network (CNN) architecture
- 2. Local connections/convolutions/pooling
- 3. Feature learning

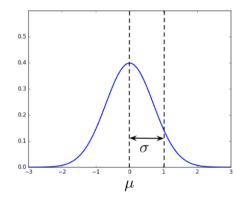


Principal Component Analysis (PCA)

- 1. Dimensionality reduction
- 2. Linear subspaces
- 3. Spectral decomposition
- 4. Autoencoders

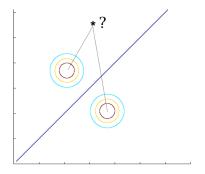


Probabilistic Models



- 1. Maximium Likelihood Estimation (MLE)
- 2. Generative vs. discriminative classification

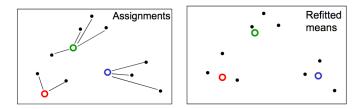
Probabilistic Models (continued)



- 1. Bayesian parameter estimation
- 2. Choosing priors
- 3. Maximium A Posteriori (MAP) Estimation
- 4. Gaussian Discriminant Analysis
- 5. Decision Boundary

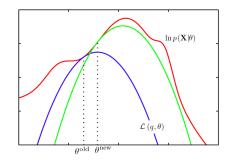
K-Means

- $1. \ \ Latent-variable \ \ models \ for \ clustering$
- 2. Initialization, assigment, refitting
- 3. Convergence
- 4. Soft vs. hard K-means

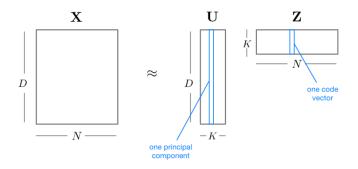


Expectation-Maximization (EM)

- 1. Gaussian Mixture Model (GMM)
- 2. E-Step, M-Step
- 3. GMM vs. K-Means
- 4. Autoencoders

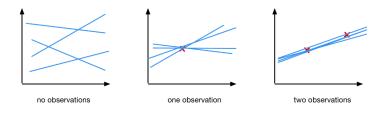


Matrix Factorization



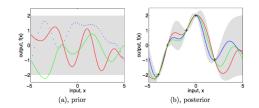
- 1. Rank-k approximation
- 2. Matrix completion (movie recommendations)
- 3. Latent factor models
- 4. Alternating Least Squares (EM)
- 5. K-Means, Sparse Coding

- 1. Posterior distribution over the parameters
- 2. Bayesian decision theory
- 3. Bayesian optimization



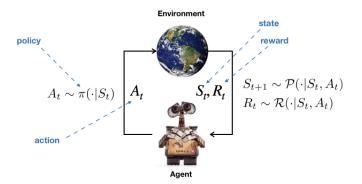
Gaussian Processes

- 1. Distribution over functions!
- 2. Every point has a Gaussian distribution
- 3. Kernel functions



Reinforcement Learning

- 1. Choosing actions to maximize long-term reward
- 2. States, actions, rewards, policies
- 3. Value function and value iteration
- 4. Batch vs. Online RL
- 5. Exploration vs. Exploitation



Sample Question 1

Consider a 2-layer neural network, f, with 10-100-100 units in each layer respectively. We denote the weights of the network as $W^{(1)}$ and $W^{(2)}$.

a) What are the dimensions of $W^{(1)}$ and $W^{(2)}$? How many trainable parameters are in the neural network (ignoring biases)?

We will now replace the weights of f with a simple *Hypernetwork*. The Hypernetwork, h, will be a two layer network with 10 input units, 10 hidden units, and K output units where K is equal to the total number of trainable parameters in f. In each forward pass, the output of h will be reshaped and used as the weights of f.

- b) How many parameters does *h* have (ignoring biases)?
- c) How might we change the output layer to reduce the number of parameters? State how many trainable parameters *h* has with your suggested method. (HINT: use matrix factorization)

Q1 Solution

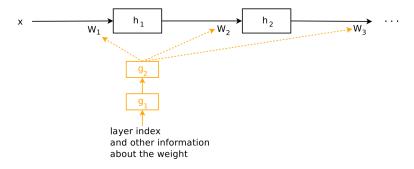
- a) $W^{(1)} \in \mathbb{R}^{10 \times 100}$, $W^{(1)} \in \mathbb{R}^{100 \times 100}$. Total parameters: $10 \times 100 + 100 \times 100 = 11000$.
- b) Total parameters: $10 \times 10 + 10 \times 11000 = 110100$.
- c) Output low rank approximations to each weight matrix. Instead of outputting $W^{(l)}$, output $U^{(l)}$ and $V^{(l)}$ such that $W^{(l)} \approx U^{(l)}V^{(l)}$. For example:

$$U^{(1)} \in \mathbb{R}^{10 \times 2} \quad V^{(1)} \in \mathbb{R}^{2 \times 100} \quad U^{(2)} \in \mathbb{R}^{100 \times 2} \quad V^{(2)} \in \mathbb{R}^{2 \times 100}$$

Now the total number of parameters is: $10 \times 10 + 10 \times (2 \times 10 + 2 \times 100 + 100 \times 2 + 2 \times 100) = 6300$

Quick interlude: Hypernetworks

This isn't quite how Hypernetworks typically work...



See Ha et al. 2016 for details

- a) State what conditions a function $k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ must satisfy to be a valid kernel function.
- b) Prove that a symmetric matrix $K \in \mathbb{R}^{d \times d}$ is positive semidefinite if and only if for all vectors $\mathbf{c} \in \mathbb{R}^d$ we have $\mathbf{c}^T K \mathbf{c} \ge 0$.

Q2 Solution

- a) Its Gram matrix, given by $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ must be positive semidefinite for any choices of $\mathbf{x}_1, \ldots, \mathbf{x}_d$.
- b) First ⇒: If K is PSD then there exists an orthonormal basis of eigenvectors v₁,..., v_d with non-negative eigenvalues λ₁,..., λ_d. We can write any vector c in this basis:
 c = ∑_{i=1}^d a_iv_i. Then,

$$\mathbf{c}^{\mathsf{T}} \mathsf{K} \mathbf{c} = \left(\sum_{i=1}^{d} a_i \mathbf{v}_i\right)^{\mathsf{T}} \mathsf{K}\left(\sum_{i=1}^{d} a_i \mathbf{v}_i\right) = \sum_{i=1}^{d} a_i a_j \mathbf{v}_i^{\mathsf{T}} \mathsf{K} \mathbf{v}_j = \sum_{i=1}^{d} a_i a_j \mathbf{v}_i^{\mathsf{T}} \lambda_j \mathbf{v}_j$$

As each of the **v**'s are orthonormal, this sum is equal to $\sum_{i=1}^{d} a_i^2 \lambda_i \ge 0.$ For \Leftarrow : Pick **c** = **v**, some eigenvector. Then $\mathbf{v}K\mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} \ge 0 \Rightarrow \lambda \ge 0.$