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cement Learning Problem

@ In supervised learning, the problem is to predict an output t given an input x.

@ But often the ultimate goal is not to predict, but to make decisions, i.e.,
take actions.

@ In many cases, we want to take a sequence of actions, each of which affects
the future possibilities, i.e., the actions have long-term consequences.

@ We want to solve sequential decision-making problems using learning-based
approaches.

An agent observes the takes an action and with the goal of
world its states changes achieving long-term
rewards.

Reinforcement Learning Problem: An agent continually interacts with the
environment. How should it choose its actions so that its long-term rewards are
maximized?
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Playing Games: Atari

https://www.youtube.com/watch?v=V1leYniJORnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Playing Games: Super Mario

https://www.youtube.com/watch?v=wfL4L_14U9A
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https://www.youtube.com/watch?v=wfL4L_l4U9A

Making Pancakes!

—

https://www.youtube.com/watch?v=W_gxLKSsSIE
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https://www.youtube.com/watch?v=W_gxLKSsSIE

Reinforcement Learning

@ Learning problems differ in the information available to the learner:

e Supervised: For a given input, we know its corresponding output, e.g.,
class label

o Reinforcement learning: We observe inputs, and we have to choose
outputs (actions) in order to maximize rewards. Correct outputs are
not provided.

o Unsupervised: We only have input data. We somehow need to organize
them in a meaningful way, e.g., clustering.

@ In RL, we face the following challenges:

Continuous stream of input information, and we have to choose actions
Effects of an action depend on the state of the agent in the world
Obtain reward that depends on the state and actions

You know the reward for your action, not other possible actions.

Could be a delay between action and reward.
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Reinforcement Learning
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Example: Tic Tac Toe, Notation

environment
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Example: Tic Tac Toe, Notation

(current)
state
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Example: Tic Tac Toe, Notation

O <«—— action

CSC 411: 21&22-Reinforcement Learning



Example: Tic Tac Toe, Notation

reward
(here: -1)

CSC 411: 21&22-Reinforcement Learning



Formalizing Reinforcement Learning Problems

@ Markov Decision Process (MDP) is the mathematical framework to describe

RL problems.

@ A discounted MDP is defined by a tuple (S, A4, P, R,7).

S: State space. Discrete or continuous

A: Action space. Here we consider finite action space, i.e.,
A= {31,...,2|A‘}.

‘P: Transition probability

R: Immediate reward distribution

~: Discount factor (0 <y < 1)

@ Let us take a closer look at each of them.

CSC 411: 21&22-Reinforcement Learning



Formalizing Reinforcement Learning Problems

@ The agent has a state s € S in the environment, e.g., the location of X and
O in tic-tac-toc, or the location of a robot in a room.

@ At every time step t =0,1,..., the agent is at state S;.

o Takes an action A;

o Moves into a new state S;1, according to the dynamics of the
environment and the selected action, i.e., Sy1 ~ P(+|st, ar)

o Receives some reward Ri11 ~ R(:|St, Aty Se+1)

@ Pl =2si=3.a=1)

@ Plser1 = 3‘% =3,a0,=1)

@ Pl =4si=3,a=1)
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Formulating Reinforcement Learning

@ The action selection mechanism is described by a policy 7

o Policy 7 is a mapping from states to actions, i.e., Ay = 7(S;)
(deterministic) or Ay ~ 7(+|S;) (stochastic).

@ The goal is to find a policy 7 such that long-term rewards of the agent is
maximized.

@ Different notions of the long-term reward:

o Cumulative/total reward: R+ Ry + Ry + ...
o Discounted (cumulative) reward: Ry + YRy + 2Ry + - -+
@ The discount factor 0 < v < 1 determines how myopic or farsighted the
agent is.
@ When 7 is closer to 0, the agent prefers to obtain reward as soon as
possible.
@ When 7 is close to 1, the agent is willing to receive rewards in the
farther future.
o The discount factor v has a financial interpretation: If a dollar next
year is worth almost the same as a dollar today, =y is close to 1. If a
dollar’'s worth next year is much less its worth today, 7 is close to 0.
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Transition Probability (or Dynamics)

@ The transition probability describes the changes in the state of the agent
when it chooses actions

P(StJr] = SI‘St = S,At = a)

@ This model has Markov property: the future depends on the past only
through the current state
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@ A policy is the action-selection mechanism of the agent, and describes its
behaviour.

@ Policy can be deterministic or stochastic:

o Deterministic policy: a = 7(s)
o Stochastic policy: A ~ 7(|s)
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Value Function

@ Value function is the expected future reward, and is used to evaluate the
desirability of states.

@ State-value function V™ (or simply value function) for policy 7 is a function
defined as

Vi(s) £ Er [ Y V' Re|So=s
t>0

It describes the expected discounted reward if the agent starts from state s
and follows policy 7.

@ The action-value function Q™ for policy 7 is

Q™ (s,a) £ Er | 'R So=5A =2

>0

It describes the expected discounted reward if the agent starts from state s,
takes action a, and afterwards follows policy 7.
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Value Function

@ The goal is to find a policy 7 that maximizes the value function

@ Optimal value function:

Q*(s,a) =sup Q" (s, a)

@ Given Q*, the optimal policy can be obtained as

7*(s) <+ argmax Q*(s, a)
a

@ The goal of an RL agent is to find a policy 7 that is close to optimal, i.e.,

Q™ ~ Q"
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Example: Tic-Tac-Toe

@ Consider the game tic-tac-toe:

e State: Positions of X's and O's on the board
o Action: The location of the new X or O.
e Policy: mapping from states to actions
o Reward: win/lose/tie the game (+1/ — 1/0) [only at final move in
given game]
@ based on rules of game: choice of one open position

o Value function: Prediction of reward in future, based on current state

@ In tic-tac-toe, since state space is tractable, we can use a table to represent
value function

@ Let us take a closer look at the value function
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Bellman Equation

The value function satisfies the following recursive relationship:

Q7(s,a) =E lz YR So = 5, A0 = a]

t=0

=E lR(SO’AO) +72’7th+1|50 =s,30 = a]
t=0
=E[R(So,Ao) + YR (51, 7(51))|S0 = s, Ao = 4]
—r(s.a) 47 [ P15, 2)Q(s' ()
S

2(T7Q™)(s.2)

This is called the Bellman equation and T™ is the Bellman operator. Similarly, we
define the Bellman optimality operator:

(T*Q)(s,a) & r(s,a) + 7/ P(ds’|s, a) max Q(s', a’)
S a’eA
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Bellman Equation

@ Key observation:
Q" =T"Q"
Q* = T Q"
@ The solution of these fixed-point equations are unique.
@ Value-based approaches try to find a Q@ such that
Q~T"Q
@ The greedy policy of Q is close to the optimal policy:
Q9 ~ Q" = @
where the greedy policy of Q is defined as

7(s; Q) + argmax Q(s, a)
acA
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Finding the Value Function

@ Let us first study the policy evaluation problem: Given a policy 7, find V™

(or Q7).
@ Policy evaluation is an intermediate step for many RL methods.

@ The uniqueness of the fixed-point of the Bellman operator implies that if we
find a Q such that T"Q = Q, then Q = Q7.

@ Assume that P and r(s,a) = E[R(:|s, a)] are known.

@ If the state-action space S x A is finite (and not very large, i.e., hundreds or
thousands, but not millions or billions), we can solve the following Linear
System of Equations:

Q(s,a) =r(s,a) +~ Z P(s'|s,a)Q(s',w(s'))  V(s,a)eSx A

s’eS

@ This is feasible for small problems (|S x A| is not too large), but for large
problems there are better approaches.
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Finding the Value Function

@ The Bellman optimality operator also has a unique fixed point.
@ If we find a @ such that T*Q = Q, then Q = Q*.

@ Let us try an approach similar to what we did for the policy evaluation
problem.

@ If the state-action space S x A is finite (and not very large), we can solve
the following Nonlinear System of Equation:

Q(s,a) = r(s,a) + Z P(s'|s, a) max Q(s,d) V(s,a)eSx A

s’eS

@ This is a nonlinear system of equations, and can be difficult to solve. Can
we do anything else?
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Finding the Optimal Value Function: Value Iteration

@ Assume that we know the model P and R. How can we find the optimal
value function?

@ Finding the optimal policy/value function when the model is known is
sometimes called the Planning problem.

@ We can benefit from the Bellman optimality equation and use a method
called Value lteration: Start from an initial function Q. For each
k=1,2,..., apply

Q1+ T Qx

Qir1(s,a) « r(s,a) + ’y/ P(ds’|s, a) max Q«(s',a")
S a'e

Qir1(s,a) < r(s,a) + Z P(s'|s, a) max Qk(s',a)
s'eS 7€
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Value lteration

@ The Value lteration converges to the optimal value function.

@ This is because of the contraction property of the Bellman (optimality)
operator, ie., [ T*Q1 — T*Q2| o < 7@ — Q2| -

Q1+ T7Qx
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Bellman Operator is Contraction (Optional)

Q1’
' T s
T (or T7) 9

L =~ . ’}/

Q2 T*.Qz

[(T"Qu)(s,a) = (T" Q)(s, a)| =

[r(s, A+ /s Ps'Is,3) mox Qu(s', a’)] -
|:r(s, a) + w/ P(ds’|s,a) max Qu(s’, a'):| ’
S adeA

=

/ P(ds’|s,a) | max Qi(s’,a’) — max Q(s’,a’)
s aeA aeA
<y [ Ps'ls ) max |ou(s’ o) - @als' )|

s adeA

/ P(ds’|s, a)
S
N————

=1

<~ max Q1 s’ ) — Q s, a
- (s’,a/)e5xA| ( ) ( )
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Bellman Operator is Contraction (Optional)

Therefore, we get that

sup  [(T"Qu)(s,a) = (T7Q)(s;a) <7 sup  |Qi(s,a) — Qu(s, )|

(s,a)eSx A (s,a)eSxA

Or more succinctly,
[T — T Q| <7 [[Q1 — Q[ -
We also have a similar result for the Bellman operator of a policy «:

[TTQ1 = T" @[, < 7I[Q1— Q-
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Challenges

@ When we have a large state space (e.g., when S C R9 or |S x A| is very
large):
o Exact representation of the value (Q) function is infeasible for all
(s,a) € S x A.
o The exact integration in the Bellman operator is challenging
Qur1(s,a) < r(s,a) +7 [, 4 P(ds']s, a) maxzea Qu(s’, ")
@ We often do not know the dynamics P and the reward function R, so we
cannot calculate the Bellman operators.
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Is There Any Hop

@ During this course, we learned many methods to learn functions (e.g.,
classifier, regressor) when the input is continuous-valued and we are only
given a finite number of data points.

@ We may adopt those technique to solve RL problems.

@ There are some other aspects of the RL problem that we do not touch in
this course; we briefly mention them later.
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Batch RL and Approximate Dynamic Programming

@ Suppose that we are given the following dataset
D, = {(S/a Ai, Ri, SII)}:n:l
(5i,A)) ~v  (vis a distribution over S x A)
S ~P(:|Si, Ai)
Ri ~ R(-|Si, Ai)

@ Can we estimate Q ~ Q* using these data?
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From Value lteration to Approximate Value lteration

@ Recall that each iteration of VI computes
Qr+1 < T Qxk

@ We cannot directly compute T*Qk. But we can use data to approximately
perform one step of VI.

Consider (S;, A, R;, S]) from the dataset D,,.
Consider a function @ : S x A — R.
We can define a random variable t; = R; + v maxyc 4 Q(S/, ).

Notice that
. Ve Al —
B R+ o QS )15 A
(S A7)+ [ PSS 4) max QLS. 2) = (T°Q)(S.A)

@ So t; = R + ymaxyca Q(S!,a') is a noisy version of (T*Q)(S;, A;). Fitting
a function to noisy real-valued data is the regression problem.
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From Value lteration to Approximate Value lteration

(T*Qr)(X;, Ai) & R +ymax Q(X;, o)

. T*Qx

@ Given the dataset D, = {(S;, A;, R;, S;)}7_; and an action-value function
estimate Qy, we can construct the dataset {(x(), ()} with
x) = (8, Ai) and t0) = R + ymaxaea Q(S/, 2).

@ Because of E[R; + v maxaea Qk(S!,a")|Si, Al = (T*Q«)(Si, Ai) we can
treat the problem of estimating Q11 as a regression problem with noisy
data.
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From Value lteration to Approximate Value lteration

(1" Qu)(X;, 4i) £ Ri +y max Qi (X[, ')

Qi % T*Qx

@ Given the dataset D, = {(S;, A;, Ri, S/)}7_; and an action-value function
estimate Qx, we solve a regression problem. We minimize the squared error:

n 2

o1
Qk+1 < argmin — Z
QeF Ni—

Q(Si, Ai) — (R,- + 7y max Q(S;, a))

@ We run this procedure K-times.

@ The policy of the agent is selected to be the greedy policy w.r.t. the final
estimate of the value function: At state s € S, the agent chooses
7(s; Qk) + argmax,c 4 Qk(s, a)

@ This method is called Approximate Value Iteration or Fitted Value Iteration.
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Choice of Estimator

We have many choices for the regression method (and the function space F):
@ Linear models: F = {Q(s,a) = w ' 9(s,a)}.
e How to choose the feature mapping 7
@ Decision Trees, Random Forest, etc.
@ Kernel-based methods, and regularized variants.

@ (Deep) Neural Networks. Deep Q Network (DQN) is an example of
performing AVI with DNN, with some DNN-specific tweaks.
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Some Remarks on AVI

@ AVI converts a value function estimation problem to a sequence of regression
problems.

@ As opposed to the conventional regression problem, the target of AVI, which
is T*Q, changes at each iteration.

@ Usually we cannot guarantee that the solution of the regression problem
Qk41 is exactly equal to T*Qk. We only have Quy1 ~ T*Qx.

@ These errors might accumulate and may even cause divergence.

@ The theoretical analysis of AVI is more complicated than the analysis of
regression problems. But it has been done.
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From Batch RL to Online RL

@ We started from the setting where the model was known (Planning) to the
setting where we do not know the model, but we have a batch of data

coming from the previous interaction of the agent with the environment
(Batch RL).

@ This allowed us to use tools from the supervised learning literature
(particularly, regression) to design RL algorithms.

@ But RL problems are often interactive: the agent continually interacts with
the environment, updates its knowledge of the world and its policy, with the
goal of achieving as much rewards as possible.

@ Can we obtain an online algorithm for updating the value function?

@ An extra difficulty is that an RL agent should handle its interaction with the
environment carefully: it should collect as much information about the
environment as possible (exploration), while benefitting from the knowledge
that has been gathered so far in order to obtain a lot of rewards
(exploitation).
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Online RL

@ Suppose that agent continually interacts with the environment. This means
that

o At time step t, the agent observes the state variable S;.

e The agent chooses an action A; according to its policy, i.e.,
Ar = m(S).

e The state of the agent in the environment changes according to the
dynamics. At time step t + 1, the state is S;11 ~ P(-|St, At). The
agent observes the reward variable too: Ry ~ R(:|S;, At).

@ Two questions:

o Can we update the estimate of the action-value function Q online and
only based on (S;, A, Rr, St+1) such that it converges to the optimal
value function Q*?

e What should the policy 7; be?

@ Q-Learning is an online algorithm that addresses the first question.

@ We present Q-Learning for finite state-action problems.
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Q-Learning with e-Greedy Policy

@ Parameters:

o Learning rate: 0 < a < 1: learning rate
o Exploration parameter: ¢

@ Initialize Q(s, a) for all (s,a) e S x A
@ The agent starts at state Sg.
@ For timestep t =0,1, ...,
o Choose A; according to the e-greedy policy, i.e.,

A argmax,c 4 Q(S¢, a) with probability 1 — ¢
! Uniformly random action in A  with probability €

Take action A; in the environment.

The state of the agent changes from S; to S;i1 ~ P(+|St, Ar)
Observe S;11 and R;

Update the action-value function at state-action (5S¢, A;):

Q(St, Ar) + Q(St, A +a |Re + ’Yla'pé!ﬁ Q(St11, 31) — Q(S, Ar)
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Exploration vs. Exploitation

@ The e-greedy is a simple mechanism for maintaining exploration-exploitation
tradeoff.

(S Q) = argmax,c 4 Q(S, a) with probability 1 — ¢
o B Uniformly random action in A  with probability €

@ The e-greedy policy ensures that most of the time (probability 1 — ¢) the
agent exploits its incomplete knowledge of the world by chooses the best
action (i.e., corresponding to the highest action-value), but occasionally
(probability €) it explores other actions.

@ Without exploration, the agent may never find some good actions.

@ The e-greedy is one of the simplest, but widely used, methods for trading-off
exploration and exploitation. Exploration-exploitation tradeoff is an
important topic of research.
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Examples of Exploration-Exploitation in the Real World

@ Restaurant Selection

e Exploitation: Go to your favourite restaurant
o Exploration: Try a new restaurant

@ Online Banner Advertisements

o Exploitation: Show the most successful advert
o Exploration: Show a different advert

@ Oil Drilling

e Exploitation: Drill at the best known location
e Exploration: Drill at a new location

@ Game Playing

e Exploitation: Play the move you believe is best
e Exploration: Play an experimental move

[Slide credit: D. Silver]
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An Intuition on Why Q-Learning Works? (Optional)

o Consider a tuple (S, A, R,S’). The Q-learning update is

Q(S. ) - Q5. A) +a [R+ 7 max 0(S'.9) - A(5.4)].

To understand this better, let us focus on its stochastic equilibrium, i.e.,
where the expected change in Q(S, A) is zero. We have

E [R 4y max Q(S'.) - o(s,A)|s,A] 0
=(T*Q)(S,A) = Q(S,A)

So at the stochastic equilibrium, we have (T*Q)(S,A) = Q(S, A). Because
the fixed-point of the Bellman optimality operator is unique (and is Q*), Q
is the same as the optimal action-value function Q*.

One can show that under certain conditions, Q-Learning indeed converges to
the optimal action-value function Q*.

This is true for finite state-action spaces. The equivalent of the Q-Learning
with function approximation might diverge.
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Recap and Other Approaches

@ We defined MDP as the mathematical framework to study RL problems.

@ We started from the assumption that the model is known (Planning). We
then relaxed it to the assumption that we have a batch of data (Batch RL).

Finally we briefly discussed Q-learning as an online algorithm to solve RL
problems (Online RL).

Environment

state
;

policy

7 reward

. =y (T*Qr)(X;, Ai) 2 R + ymax Qp(X], a')
; S R| Seer~PCIS, A N e
Ay ~7(|S) el RIS, A

Q- T*Qk

action ~
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Recap and Other Approaches

All discussed approaches estimate the value function first. They are called
value-based methods.

There are methods that directly optimize the policy, i.e., policy search
methods.

Model-based RL methods estimate the true, but unknown, model of
environment P by an estimate P, and use the estimate P in order to plan.

There are hybrid methods.

Environment
(Real World)

Policy
Agent (Planner)

- o

% Model

Model
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Reinforcement Learning Resources

@ Books:

e Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, 2nd edition, 2018.

o Csaba Szepesvari, Algorithms for Reinforcement Learning, 2010.

o Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst,
Reinforcement Learning and Dynamic Programming Using Function
Approximators, 2010.

o Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic
Programming, 1996.

@ Courses:

e Video lectures by David Silver

o CIFAR and Vector Institute’s Reinforcement Learning Summer School,
2018.

o Deep Reinforcement Learning, CS 294-112 at UC Berkeley
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https://www.youtube.com/watch?v=2pWv7GOvuf0
https://dlrlsummerschool.ca/
https://dlrlsummerschool.ca/
http://rail.eecs.berkeley.edu/deeprlcourse/

