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Overview

We’ve covered both parametric and nonparametric models for
regression and classification.

Parametric models summarize the data into a finite-sized model. E.g.,
linear regression, logistic regression, neural nets, (linear) SVM, Näıve
Bayes, GDA
Nonparametric models refer back to the data to make predictions.
E.g., KNN

The next two lectures are about Bayesian approaches to regression.

This lecture: Bayesian linear regression, a parametric model
Next lecture: Gaussian processes, a nonparametric model
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Overview

We’re going to be Bayesian about the parameters of the model.

This is in contrast with näıve Bayes and GDA: in those cases, we used
Bayes’ rule to infer the class, but used point estimates of the
parameters.
By inferring a posterior distribution over the parameters, the model can
know what it doesn’t know.

How can uncertainty in the predictions help us?

Smooth out the predictions by averaging over lots of plausible
explanations (just like ensembles!)
Assign confidences to predictions
Make more robust decisions
Guide exploration (focus on areas you’re uncertain about)

E.g., Bayesian optimization (see next tutorial)
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Recap: Linear Regression

Given a training set of inputs and targets {(x(i), t(i))}Ni=1

Linear model:
y = w>ψ(x)

Squared error loss:

L(y , t) =
1

2
(t − y)2

L2 regularization:

R(w) =
λ

2
‖w‖2

Solution 1: solve analytically by setting the gradient to 0

w = (Ψ>Ψ + λI)−1Ψ>t

Solution 2: solve approximately using gradient descent

w← (1− αλ)w − αΨ>(y − t)
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Recap: Linear Regression

We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t | x ∼ N (w>ψ(x), σ2)

Linear regression is just maximum likelihood under this model:

1

N

N∑
i=1

log p(t(i) | x(i);w, b) =
1

N

N∑
i=1

logN (t(i);w>ψ(x), σ2)

=
1

N

N∑
i=1

log

[
1√
2πσ

exp

(
− (t(i) − w>ψ(x))2

2σ2

)]

= const− 1

2Nσ2

N∑
i=1

(t(i) − w>ψ(x))2
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Recap: Linear Regression

We can view an L2 regularizer as MAP inference with a Gaussian prior.

Recall MAP inference:

argmax
w

log p(w | D) = argmax
w

[log p(w) + log p(D |w)]

We just derived the likelihood term log p(D |w):

log p(D |w) = − 1

2Nσ2

N∑
i=1

(t(i) − w>x− b)2 + const

Assume a Gaussian prior, w ∼ N (m,S):

log p(w) = logN (w;m,S)

= log

[
1

(2π)D/2|S|1/2
exp

(
− 1

2
(w −m)>S−1(w −m)

)]
= − 1

2
(w −m)>S−1(w −m) + const

Commonly, m = 0 and S = ηI, so

log p(w) = − 1

2η
‖w‖2 + const.

This is just L2 regularization!
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Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w | D) ∝ p(w)p(D |w)

Make predictions using the posterior predictive distribution:

p(t | x,D) =

∫
p(w | D) p(t | x,w) dw

Doing this lets us quantify our uncertainty.

UofT CSC 411: 19-Bayesian Linear Regression 7 / 36



Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.

Prior distribution: w ∼ N (0,S)

Likelihood: t | x,w ∼ N (w>ψ(x), σ2)

Assuming fixed/known S and σ2 is a big assumption. More on this
later.
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Bayesian Linear Regression: Posterior

Deriving the posterior distribution:

log p(w | D) = log p(w) + log p(D |w) + const

= − 1
2
w>S−1w − 1

2σ2
‖Ψw − t‖2 + const

= − 1
2
w>S−1w − 1

2σ2

(
w>Ψ>Ψw − 2t>Ψw + t>t

)
+ const

= − 1
2
(w − µ)>Σ−1(w − µ) + const (complete the square!)

where

µ = σ−2ΣΨ>t

Σ−1 = σ−2Ψ>Ψ + S−1

This is a multivariate Gaussian distribution, i.e.

w | D ∼ N (µ,Σ)
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Bayesian Linear Regression: Posterior

Just showed:

w | D ∼ N (µ,Σ)

µ = σ−2ΣΨ>t

Σ−1 = σ−2Ψ>Ψ + S−1

Since a Gaussian prior leads to a Gaussian posterior, this means the
Gaussian distribution is the conjugate prior for linear regression!

Compare µ the closed-form solution for linear regression:

w = (Ψ>Ψ + λI)−1Ψ>t
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Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Example with radial basis function (RBF) features

ψj(x) = exp

(
−

(x − µj)2

2s2

)

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Posterior predictive distribution:

p(t | x,D) =

∫
p(t | x,w)︸ ︷︷ ︸
N (t ;w>ψ(x),σ)

p(w | D)︸ ︷︷ ︸
N (w ;µ,Σ)

dw

Another interpretation: t = w>ψ(x) + ε, where ε ∼ N (0, σ) is
independent of w.

By the linear combination rules for Gaussian random variables, t is a
Gaussian distribution with parameters

µpred = µ>ψ(x)

σ2pred = ψ(x)>Σψ(x) + σ2

Hence, the posterior predictive distribution is N (t ; µpred, σ
2
pred).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Decision Theory

What do we actually do with the posterior predictive distribution
p(t | x,D)?

Often, we want to make a decision. We can formulate this as
minimizing the expected loss under the posterior distribution. This is
known as decision theory.

Simple example: want to choose a single prediction y to minimize the
expected squared error loss.

arg min
y

Ep(t | x,D)[(y − t)2] = Ep(t | x,D)[t]

Same derivation as bias/variance from Lecture 4
Similarly, you can show that under absolute value loss, you should pick
the median.
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Now for a more interesting use of Bayesian decision theory...
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Bayesian Optimization

Black-box optimization: we want to minimize a function, but we only
get to query function values (i.e. no gradients!)

Each query is expensive, so we want to do as few as possible
Canonical example: minimize the validation error of an ML algorithm
with respect to its hyperparameters

Bayesian Optimization: approximate the function with a simpler
function (e.g. linear in a feature representation), called the surrogate
function.
After we’ve queried a certian number of points, we can condition on
these to infer the posterior over the surrogate function using Bayesian
linear regression.
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Bayesian Optimization

To choose the next point to query, we must define an acquisition
function, which tells us how promising a candidate it is.

What’s wrong with the following acquisition functions:

posterior mean: −E[f (θ)]
posterior variance: Var(f (θ))

Desiderata:

high for points we expect to be good
high for points we’re uncertain about
low for points we’ve already tried

Candidate 1: probability of improvement (PI)

PI = Pr(f (θ) < γ − ε),

where γ is the best value so far, and ε is small.
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Bayesian Optimization

Examples:

Plots show the posterior predictive distribution for f (θ).
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Bayesian Optimization

The problem with Probability of Improvement (PI): it queries points it
is highly confident will have a small imporvement

Usually these are right next to ones we’ve already evaluated

A better choice: Expected Improvement (EI)

EI = E[max(γ − f (θ), 0)]

The idea: if the new value is much better, we win by a lot; if it’s much
worse, we haven’t lost anything.
There is an explicit formula for this if the posterior predictive
distribution is Gaussian.
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Bayesian Optimization

Examples:
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Bayesian Optimization

I showed one-dimensional visualizations, but the higher-dimensional
case is conceptually no different.

Maximize the acquisition function using gradient descent
Use lots of random restarts, since it is riddled with local maxima
BayesOpt can be used to optimize tens of hyperparameters.

I’ve described BayesOpt in terms of Bayesian linear regression with
basis functions learned by a neural net.

In practice, it’s typically done with Gaussian processes, which are the
topic of next lecture.
But Bayesian linear regression is actually useful, since it scales better to
large numbers of queries.

One variation: some configurations can be much more expensive than
others

Use another Bayesian regression model to estimate the computational
cost, and query the point that maximizes expected improvement per
second
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Bayesian Optimization

BayesOpt can often beat hand-tuned configurations in a relatively
small number of steps.

Results on optimizing hyperparameters (layer-specific learning rates,
weight decay, and a few other parameters) for a CIFAR-10 conv net:

Each function evaluation takes about an hour

Human expert = Alex Krizhevsky, the creator of AlexNet
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Optional material
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Occam’s Razor (optional)

Occam’s Razor: “Entities should not be multiplied beyond necessity.”

Named after the 14th century British theologian William of Occam

Huge number of attempts to formalize mathematically

See Domingos, 1999, “The role of Occam’s Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf

Common misinterpretation: your prior should favor simple
explanations
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Occam’s Razor (optional)

Suppose you have a finite set of models, or hypotheses {Hi}Mi=1

(e.g. polynomials of different degrees)

Posterior inference over models (Bayes’ Rule):

p(Hi | D) ∝ p(Hi )︸ ︷︷ ︸
prior

p(D |Hi )︸ ︷︷ ︸
evidence

Which of these terms do you think is more important?

The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

p(D |Hi ) =

∫
p(w |Hi ) p(D |w,Hi )dw

If we’re comparing a handful of hypotheses, p(Hi ) isn’t very
important, so we can compare them based on marginal likelihood.
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Occam’s Razor (optional)

Suppose M1, M2, and M3 denote a linear, quadratic, and cubic model.

M3 is capable of explaning more datasets than M1.

But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

— Bishop, Pattern Recognition and Machine Learning
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Occam’s Razor (optional)

How does the evidence (or marginal likelihood) penalize complex
models?

Approximating the integral:

p(D |Hi ) =

∫
p(D |w,Hi ) p(w |Hi )

' p(D |wMAP,Hi )︸ ︷︷ ︸
best-fit likelihood

p(wMAP |Hi ) ∆w︸ ︷︷ ︸
Occam factor
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Occam’s Razor (optional)

Multivariate case:

p(D |Hi ) ' p(D |wMAP,Hi )︸ ︷︷ ︸
best-fit likelihood

p(wMAP |Hi ) |A|−1/2︸ ︷︷ ︸
Occam factor

,

where A = ∇2
w log p(D |w,Hi )

The determinant appears because we’re
taking the volume.

The more parameters in the model, the
higher dimensional the parameter space,
and the faster the volume decays.

— Bishop, Pattern Recognition and Machine
Learning
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Occam’s Razor (optional)

Analyzing the asymptotic behavior:

A = ∇2
w log p(D |w,Hi )

=
N∑
j=1

∇2
w log p(yi | xi ,w,Hi )︸ ︷︷ ︸

,Ai

≈ N E[Ai ]

log Occam factor = log p(wMAP |Hi ) + log |A|−1/2

≈ log p(wMAP |Hi ) + log |N E[Ai ]|−1/2

= log p(wMAP |Hi )−
1

2
log |E[Ai ]| −

D logN

2

= const− D logN

2

Bayesian Information Criterion (BIC): penalize the complexity of your model by
1
2
D logN.
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Occam’s Razor (optional)

Summary

p(Hi | D) ∝ p(Hi ) p(D |Hi )

p(D |Hi ) ' p(D |wMAP,Hi ) p(wMAP |Hi ) |A|−1/2

Asymptotically, with lots of data, this behaves like

log p(D |Hi ) = log p(D |wMAP,Hi )−
1

2
D logN.

Occam’s Razor is about integration, not priors (over hypotheses).
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