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Overview

@ We've covered both parametric and nonparametric models for
regression and classification.
o Parametric models summarize the data into a finite-sized model. E.g.,
linear regression, logistic regression, neural nets, (linear) SVM, Naive
Bayes, GDA
o Nonparametric models refer back to the data to make predictions.
E.g., KNN
@ The next two lectures are about Bayesian approaches to regression.
o This lecture: Bayesian linear regression, a parametric model
o Next lecture: Gaussian processes, a nonparametric model
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Overview

@ We're going to be Bayesian about the parameters of the model.

e This is in contrast with naive Bayes and GDA: in those cases, we used
Bayes' rule to infer the class, but used point estimates of the
parameters.

e By inferring a posterior distribution over the parameters, the model can
know what it doesn’t know.

@ How can uncertainty in the predictions help us?

e Smooth out the predictions by averaging over lots of plausible
explanations (just like ensembles!)

o Assign confidences to predictions

o Make more robust decisions
o Guide exploration (focus on areas you're uncertain about)

o E.g., Bayesian optimization (see next tutorial)
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Recap: Linear Regression

Given a training set of inputs and targets {(x(), t())}N

@ Linear model:
y =w'(x)

Squared error loss:

L, regularization:
A

R(w) = >

lwlf?

@ Solution 1: solve analytically by setting the gradient to 0
w=Ww4a) et
@ Solution 2: solve approximately using gradient descent
w (1—ad)w—aW'(y—t)
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Recap: Linear Regression

@ We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t]x ~N(w'9(x), o)

@ Linear regression is just maximum likelihood under this model:

Zlogp t|x; w, b) Zlog/\/ sw ' 4h(x), 0%)
Z log { o (_ (¢ —ZV;¢(X))2)}

1 )
. _ 0 _ T 2
= const No? ;:1 (¢ w (x))
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Recap: Linear Regression

@ We can view an L, regularizer as MAP inference with a Gaussian prior.
@ Recall MAP inference:

arg max log p(w | D) = arg max [log p(w) + log p(D | w)]

@ We just derived the likelihood term log p(D | w):

N

log p(D|w) = L Z(t(i) —w ' x — b)? + const
i=1

" 2No? —

@ Assume a Gaussian prior, w ~ A (m,S):
log p(w) = log N'(w; m, S)
_ 1 1 Te-1
=—1(w- m)'S™!(w — m) + const
@ Commonly, m=0and S =1l, so
log p(w) = f%|\w\|2 + const.

This is just Ly regularization!
UofT CSC 411: 19-Bayesian Linear Regression 6/36



Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes' Rule:
p(w| D) o p(w)p(D| w)

Make predictions using the posterior predictive distribution:

p(trx,D)—/p(wm)p(t\x,w)dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

@ Bayesian linear regression considers various plausible explanations for
how the data were generated.
@ It makes predictions using all possible regression weights, weighted by

their posterior probability.

>
>

no observations one observation two observations

@ Prior distribution: w ~ N(0,S)

o Likelihood: t|x,w ~ N (w'(x), o?)

@ Assuming fixed /known S and o2 is a big assumption. More on this
later.
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Bayesian Linear Regression: Posterior

@ Deriving the posterior distribution:

log p(w | D) = log p(w) + log p(D | w) + const

= f—wTS w— —||Wwft|| + const

_ 1
= —%WTS w — 252 ( TwTyw — 2t Tww + tTt) + const
=—I(w-— ) 7 (w — p) + const (complete the square!)

where

p=o02EXW't
s 12wy 4s?

@ This is a multivariate Gaussian distribution, i.e.

w|D ~N(p, X)
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Bayesian Linear Regression: Posterior

@ Just showed:
w|D ~ N (s, E)
p=oc2TW't
Tl=0cwwist

@ Since a Gaussian prior leads to a Gaussian posterior, this means the
Gaussian distribution is the conjugate prior for linear regression!

@ Compare p the closed-form solution for linear regression:

w=(Ww4a)tu't
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Bayesian Linear Regression

likelihood prior/posterior data space
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— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

e Example with radial basis function (RBF) features

Yy() = exp (—(X‘“’z)
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— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

@ Posterior predictive distribution:

p(t\x,D):/ p(t|x,w) p(w|D) dw
N(t;wTap(x),0) N(w;p,X)

o Another interpretation: t = w'(x) + &, where £ ~ N(0,0) is
independent of w.

@ By the linear combination rules for Gaussian random variables, t is a
Gaussian distribution with parameters

Hpred = NT'lp(X)
Ohrea = P(x) T Zp(x) + 0°

@ Hence, the posterior predictive distribution is A/(t; /‘predvagred)-
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Decision Theory

@ What do we actually do with the posterior predictive distribution
p(t|x,D)?

@ Often, we want to make a decision. We can formulate this as
minimizing the expected loss under the posterior distribution. This is
known as decision theory.

@ Simple example: want to choose a single prediction y to minimize the
expected squared error loss.

arg myin Ep(t 1)y = )°] = Ep(e x,p)t]

e Same derivation as bias/variance from Lecture 4
o Similarly, you can show that under absolute value loss, you should pick
the median.
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Now for a more interesting use of Bayesian decision theory...
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Bayesian Optimization

@ Black-box optimization: we want to minimize a function, but we only
get to query function values (i.e. no gradients!)
e Each query is expensive, so we want to do as few as possible
o Canonical example: minimize the validation error of an ML algorithm
with respect to its hyperparameters
@ Bayesian Optimization: approximate the function with a simpler
function (e.g. linear in a feature representation), called the surrogate
function.
o After we've queried a certian number of points, we can condition on
these to infer the posterior over the surrogate function using Bayesian
linear regression.
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Bayesian Optimization

@ To choose the next point to query, we must define an acquisition
function, which tells us how promising a candidate it is.
@ What's wrong with the following acquisition functions:

o posterior mean: —E[f(0)]
o posterior variance: Var(f(6))

@ Desiderata:

e high for points we expect to be good
e high for points we're uncertain about
e low for points we've already tried

e Candidate 1: probability of improvement (PI)
PI=Pr(f(0) <~ —e),

where v is the best value so far, and € is small.
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Bayesian Optimization

Examples:

~— best value
so far

Pl=0.5 Pl =0.023

Pl =0.309 Pl =0.999

@ Plots show the posterior predictive distribution for ().
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Bayesian Optimization

@ The problem with Probability of Improvement (Pl): it queries points it
is highly confident will have a small imporvement

o Usually these are right next to ones we've already evaluated

@ A better choice: Expected Improvement (EI)

EI = E[max(y — £(6),0)]

e The idea: if the new value is much better, we win by a lot; if it's much
worse, we haven't lost anything.

e There is an explicit formula for this if the posterior predictive
distribution is Gaussian.
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Bayesian Optimization

Examples:

¥— best value
so far

El =0.199

El = 0.004

El = 0.396

El =0.15
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True Function with Three Observations
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2 - Bayesian nonlinear regression predictive distributions

— 95%
— 90%

+— 80%
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2 - How do the predictions compare to the current best?
— 95%
— 90%
— 80%
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Bayesian Optimization

o | showed one-dimensional visualizations, but the higher-dimensional
case is conceptually no different.
e Maximize the acquisition function using gradient descent
@ Use lots of random restarts, since it is riddled with local maxima
e BayesOpt can be used to optimize tens of hyperparameters.

@ I've described BayesOpt in terms of Bayesian linear regression with
basis functions learned by a neural net.
e In practice, it's typically done with Gaussian processes, which are the
topic of next lecture.
o But Bayesian linear regression is actually useful, since it scales better to
large numbers of queries.

@ One variation: some configurations can be much more expensive than
others
o Use another Bayesian regression model to estimate the computational
cost, and query the point that maximizes expected improvement per
second
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Bayesian Optimization

o BayesOpt can often

beat hand-tuned configurations in a relatively

small number of steps.

@ Results on optimizing hyperparameters (layer-specific learning rates,
weight decay, and a few other parameters) for a CIFAR-10 conv net:
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@ Each function evaluation takes about an hour

@ Human expert = Alex Krizhevsky, the creator of AlexNet

Uof T
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Optional material
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Occam'’s Razor (optional)

@ Occam's Razor: “Entities should not be multiplied beyond necessity.”
o Named after the 14th century British theologian William of Occam
@ Huge number of attempts to formalize mathematically
e See Domingos, 1999, “The role of Occam’s Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf
@ Common misinterpretation: your prior should favor simple
explanations
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Occam'’s Razor (optional)

@ Suppose you have a finite set of models, or hypotheses {#;}M,
(e.g. polynomials of different degrees)

@ Posterior inference over models (Bayes' Rule):
p(Hi|D) o p(H;) p(D | H;)
—— —
prior  evidence

@ Which of these terms do you think is more important?

@ The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

p(D|Hy) = / p(w | H;) p(D | w, H;) dw

o If we're comparing a handful of hypotheses, p(#;) isn't very
important, so we can compare them based on marginal likelihood.
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Occam'’s Razor (optional)

@ Suppose My, M, and M3 denote a linear, quadratic, and cubic model.
@ Mjs is capable of explaning more datasets than M.

@ But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

4

p(D) M,

M

("

Dy

D

— Bishop, Pattern Recognition and Machine Learning

UofT CSC 411: 19-Bayesian Linear Regression 32/36



Occam'’s Razor (optional)

@ How does the evidence (or marginal likelihood) penalize complex
models?

@ Approximating the integral:

p(D|H;) = / p(D |w, H;) p(w | H;)

~ p(D|wynap, Hi) p(Wnmap | Hi) Aw

best-fit likelihood OCC&I’;}’ factor
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Occam'’s Razor (optional)

likelihood priorfposterior data space
1 1

@ Multivariate case: @ §
p(D|Hi) = p(D | waiap, Hi) p(wuar | H) A 72, ' i §
best-fit likelihood Occam factor " ‘ Y

where A = V2 log p(D | w, H,)

@ The determinant appears because we're
taking the volume.

@ The more parameters in the model, the
higher dimensional the parameter space,
and the faster the volume decays.

Bl 0wy ! - 0wy ! gl ooz 1

— Bishop, Pattern Recognition and Machine
Learning
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Occam'’s Razor (optional)

@ Analyzing the asymptotic behavior:

A =V log p(D|w,H;)

N
- Z V2 log p(yi | xi, w, ;)

j=1

2
~ NE[A]]

log Occam factor = log p(wnmap | Hi) + log |A|71/2

~ log p(wniap | Hi) + log [N E[A]| />
Dlog N
2

1
= log p(waiap | Hi) — 5 log [E[A]] —

Dlog N

= const —
" 2

@ Bayesian Information Criterion (BIC): penalize the complexity of your model by
%D log N.
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Occam'’s Razor (optional)

@ Summary

p(H;i|D) o< p(H;) p(D | H;)
p(D| ;) ~ p(D | waap, Hi) p(waiap | Hi) |A] 722

Asymptotically, with lots of data, this behaves like
1
log p(D | 1) = log p(D | wnap, H;) — 5 Dlog N.

@ Occam'’s Razor is about integration, not priors (over hypotheses).
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