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Motivating Examples

@ Some examples of situations where you'd use unupservised learning

» You want to understand how a scientific field has changed over time.
You want to take a large database of papers and model how the
distribution of topics changes from year to year. But what are the
topics?

> You're a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don't know the
set of behaviors ahead of time.

» You want to reduce your energy consumption, so you take a time series
of your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

@ Common theme: you have some data, and you want to infer the
causal structure underlying the data.

@ This structure is latent, which means it's never observed.
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Overview

@ In last lecture, we looked at density modeling where all the random
variables were fully observed.
@ The more interesting case is when some of the variables are latent, or
never observed. These are called latent variable models.
» Today's lecture: K-means, a simple algorithm for clustering, i.e.

grouping data points into clusters
» Next 2 lectures: reformulate clustering as a latent variable model,

apply the EM algorithm
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Clustering

@ Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

@ Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.
@ Grouping data points into clusters, with no labels, is called clustering

e E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

» This is an overly simplistic model — more on that later
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Clustering

@ Assume the data {x(!), ..., x(M} lives in a Euclidean space, x(") € RY.
@ Assume the data belongs to K classes (patterns)

@ Assume the data points from same class are similar, i.e. close in Euclidean
distance.

@ How can we identify those classes (data points that belong to each class)?
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K-means intuition

@ K-means assumes there are k clusters, and each point is close to its cluster
center (the mean of points in the cluster).

@ If we knew the cluster assignment we could easily compute means.
@ If we knew the means we could easily compute cluster assignment.
@ Chicken and egg problem!

@ Can show it is NP hard.

@ Very simple (and useful) heuristic - start randomly and alternate between
the two!
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K-means

@ Initialization: randomly initialize cluster centers

@ The algorithm iteratively alternates between two steps:

» Assignment step: Assign each data point to the closest cluster

» Refitting step: Move each cluster center to the center of gravity of the
data assigned to it
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Figure from Bishop
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Simple demo: http://syskall.com/kmeans. js/

8/18


http://syskall.com/kmeans.js/

K-means Objective

What is actually being optimized?

(" K-means Objective: )

Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x("} to their assigned cluster centers

min m m—x")2
min_ J({m} {r}) = ZZ i — x|

=1 k=1

s.t.Zr,E")zl,Vn, where " € {0,1},Vk,n
k

(n)

where r,” = 1 means that x(") is assigned to cluster k (with center my)

J

@ Optimization method is a form of coordinate descent ("block coordinate
descent”)

» Fix centers, optimize assignments (choose cluster whose mean is
closest)
» Fix assignments, optimize means (average of assigned datapoints)
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The K-means Algorithm

@ Initialization: Set K cluster means my, ..., my to random values
@ Repeat until convergence (until assignments do not change):

» Assignment: Each data point x(") assigned to nearest mean
kM = arg mkin d(my, x(M)

(with, for example, L2 norm: kn = arg ming |jmy — x(")||2)

and Responsibilities (1-hot encoding)
i =1 k) =k

» Refitting: Model parameters, means are adjusted to match sample
means of data points they are responsible for:

(M) (n)
_ Yoale X
n)
Zn Fy

my



K-means for Vector Quantization

Original image

Figure from Bishop
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K-means for Image Segmentation

@ How would you modify k-means to get superpixels?
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Why K-means Converges

@ Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

@ Whenever a cluster center is moved, J is reduced.

@ Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).
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@ K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima

@ The objective J is non-convex (so
coordinate descent on J is not guaranteed

to converge to the global minimum)
A bad local optimum

@ There is nothing to prevent k-means
getting stuck at local minima.

@ We could try many random starting points o *Oe
i eQe
@ We could try non-local split-and-merge o

moves:

» Simultaneously merge two nearby
clusters
» and split a big cluster into two
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@ Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

» Allows a cluster to use more information about the data in the refitting
step.

» What happens to our convergence guarantee?

» How do we decide on the soft assignments?
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Soft K-means Algorithm

@ Initialization: Set K means {my} to random values
@ Repeat until convergence (until assignments do not change):

» Assignment: Each data point n given soft " degree of assignment” to
each cluster mean k, based on responsibilities

() _ _exp[=Bd(my, x™)]
oY exp[—pd(my, x()]

> Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

>on rk x(")
Zn rkn

my =
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Questions about Soft K-means

Some remaining issues
@ How to set 37
@ What about problems with elongated clusters?
@ Clusters with unequal weight and width

These aren't straightforward to address with K-means. Instead, next lecture, we'll
reformulate clustering using a generative model.
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