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Motivating Examples

Some examples of situations where you’d use unupservised learning
I You want to understand how a scientific field has changed over time.

You want to take a large database of papers and model how the
distribution of topics changes from year to year. But what are the
topics?

I You’re a biologist studying animal behavior, so you want to infer a
high-level description of their behavior from video. You don’t know the
set of behaviors ahead of time.

I You want to reduce your energy consumption, so you take a time series
of your energy consumption over time, and try to break it down into
separate components (refrigerator, washing machine, etc.).

Common theme: you have some data, and you want to infer the
causal structure underlying the data.

This structure is latent, which means it’s never observed.
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Overview

In last lecture, we looked at density modeling where all the random
variables were fully observed.

The more interesting case is when some of the variables are latent, or
never observed. These are called latent variable models.

I Today’s lecture: K-means, a simple algorithm for clustering, i.e.
grouping data points into clusters

I Next 2 lectures: reformulate clustering as a latent variable model,
apply the EM algorithm
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Clustering

Sometimes the data form clusters, where examples within a cluster are
similar to each other, and examples in different clusters are dissimilar:

Such a distribution is multimodal, since it has multiple modes, or
regions of high probability mass.

Grouping data points into clusters, with no labels, is called clustering

E.g. clustering machine learning papers based on topic (deep learning,
Bayesian models, etc.)

I This is an overly simplistic model — more on that later
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Clustering

Assume the data {x(1), . . . , x(N)} lives in a Euclidean space, x(n) ∈ Rd .

Assume the data belongs to K classes (patterns)

Assume the data points from same class are similar, i.e. close in Euclidean
distance.

How can we identify those classes (data points that belong to each class)?
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K-means intuition

K-means assumes there are k clusters, and each point is close to its cluster
center (the mean of points in the cluster).

If we knew the cluster assignment we could easily compute means.

If we knew the means we could easily compute cluster assignment.

Chicken and egg problem!

Can show it is NP hard.

Very simple (and useful) heuristic - start randomly and alternate between
the two!
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K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

I Assignment step: Assign each data point to the closest cluster
I Refitting step: Move each cluster center to the center of gravity of the

data assigned to it

Assignments Refitted 
means 
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Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
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K-means Objective

What is actually being optimized?

K-means Objective:
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(n)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

s.t.
∑
k

r
(n)
k = 1,∀n, where r

(n)
k ∈ {0, 1},∀k, n

where r
(n)
k = 1 means that x(n) is assigned to cluster k (with center mk)

Optimization method is a form of coordinate descent (”block coordinate
descent”)

I Fix centers, optimize assignments (choose cluster whose mean is
closest)

I Fix assignments, optimize means (average of assigned datapoints)
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The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

I Assignment: Each data point x(n) assigned to nearest mean

k̂n = arg min
k

d(mk , x
(n))

(with, for example, L2 norm: k̂n = arg mink ||mk − x(n)||2)

and Responsibilities (1-hot encoding)

r
(n)
k = 1←→ k̂(n) = k

I Refitting: Model parameters, means are adjusted to match sample
means of data points they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k

CSC411 Lec15 10 / 18



K-means for Vector Quantization

Figure from Bishop

CSC411 Lec15 11 / 18



K-means for Image Segmentation

How would you modify k-means to get superpixels?
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Why K-means Converges

Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

Whenever a cluster center is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima

The objective J is non-convex (so
coordinate descent on J is not guaranteed
to converge to the global minimum)

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting points

We could try non-local split-and-merge
moves:

I Simultaneously merge two nearby
clusters

I and split a big cluster into two

A bad local optimum 
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Soft K-means

Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the refitting
step.

I What happens to our convergence guarantee?
I How do we decide on the soft assignments?
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (until assignments do not change):

I Assignment: Each data point n given soft ”degree of assignment” to
each cluster mean k , based on responsibilities

r
(n)
k =

exp[−βd(mk , x(n))]∑
j exp[−βd(mj , x(n))]

I Refitting: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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Questions about Soft K-means

Some remaining issues

How to set β?

What about problems with elongated clusters?

Clusters with unequal weight and width

These aren’t straightforward to address with K-means. Instead, next lecture, we’ll
reformulate clustering using a generative model.
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