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Maximum Likelihood

o We'll shift directions now, and spend most of the next 4 weeks talking
about probabilistic models.
o Today

e maximum likelihood estimation
e naive Bayes
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Maximum Likelihood

@ Motivating example: estimating the parameter of a biased coin

e You flip a coin 100 times. It lands heads Ny = 55 times and tails
N+ = 45 times.
o What is the probability it will come up heads if we flip again?

@ Model: flips are independent Bernoulli random variables with
parameter 6.

o Assume the observations are independent and identically distributed

(i.id.)
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Maximum Likelihood

The likelihood function is the probability of the observed data, as a
function of 6.

In our case, it's the probability of a particular sequence of H's and T's.

Under the Bernoulli model with i.i.d. observations,
L(9) = p(D) = ¥ (1 — )M

@ This takes very small values (in this case,
L(0.5) = 0.5190 ~ 7.9 x 10731)

@ Therefore, we usually work with log-likelihoods:
0(0) = log L(#) = Ny log 6 + Nt log(1 — 0)

o Here, £(0.5) = log0.51% = 100log 0.5 = —69.31

Uof T CSC 411: 13-Probabilistic Models 4/23



Maximum Likelihood

Ny =55, Ny =45
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Maximum Likelihood

@ Good values of # should assign high probability to the observed data.
This motivates the maximum likelihood criterion.

@ Remember how we found the optimal solution to linear regression by
setting derivatives to zero? We can do that again for the coin

example.
d/s d
— = — (Nylogd + Ntlog(l—190
5 = 5 (Nulogh + Nrlog(1 - 6))
Ny Ny
0 1-6

@ Setting this to zero gives the maximum likelihood estimate:

Ny

= N
ML Ny + Nt
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Maximum Likelihood

@ This is equivalent to minimizing cross-entropy. Let t; = 1 for heads
and t; = 0 for tails.

Leg=—) tilogh— (1 —t;)log(1 - 6)

= _NH |Og9 — NT |Og(1 — 0)
— —((0)
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Maximum Likelihood

@ Recall the Gaussian, or normal,

distribution:
. _ 1 C(x=p)?
N(X' Ky U) - \/%O' exp ( 20_2 o5

@ The Central Limit Theorem says
that sums of lots of independent
random variables are approximately
Gaussian. o1

@ In machine learning, we use =
Gaussians a lot because they make
the calculations easy.

T ef---
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Maximum Likelihood

@ Suppose we want to model the distribution of temperatures in
Toronto in March, and we've recorded the following observations:
-25 -99 -121 -89 -6.0 -48 24
@ Assume they're drawn from a Gaussian distribution with known
standard deviation o = 5, and we want to find the mean u.
o Log-likelihood function:

N <) _ )2
R ([ |

1 x() — )2
:Z;Iog [m.aexp (—( 202,u) )]
_ i 1 () —

log 2m — | —
og2m — logo 252

N |

~
constant!
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Maximum Likelihood

@ Maximize the log-likelihood by setting the derivative to zero:

N
d¢ 1 d ,
= — =N (x(N 2

1L
_ ;ZX(')—#
i=1

@ Solving we get u = % Z,N:l x(

@ This is just the mean of the observed values, or the empirical mean.
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Maximum Likelihood

@ In general, we don't know the true standard deviation o, but we can
solve for it as well.

@ Set the partial derivatives to zero, just like in linear regression.

N
o 1 ;
0= — =—— (0 _
o
N
ol ag (x7 #)2]
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Maximum Likelihood

@ Sometimes there is no closed-form solution. E.g., consider the gamma
distribution, whose PDF is

b a —DbX
p(x) = m 1eb7

where [ is the gamma function, a generalization of the factorial
function to continuous values.

@ There is no closed-form solution, but we can still optimize the
log-likelihood using gradient ascent.

Uof T CSC 411: 13-Probabilistic Models 12/23



Maximum Likelihood

@ So far, maximum likelihood has told us to use empirical counts or
statistics:
e Bernoulli: 6 = NHA‘{f’NT
o Gaussian: = 1 > x0, 62 = L 37 (x(D — )2
@ This doesn’t always happen; the class of probability distributions that
have this property is exponential families.
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Maximum Likelihood

We've been doing maximum likelihood estimation all along!

@ Squared error loss (e.g. linear regression)
p(tly) = N(tiy,0?)

1
—log p(t|y) = ﬁ(y — )2 + const

e Cross-entropy loss (e.g. logistic regression)

p(t=1ly) =y
—log p(tly) = —tlogy — (1 — t)log(1 - y)
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Generative vs Discriminative

Two approaches to classification:

@ Discriminative classifiers estimate parameters of decision boundary/class
separator directly from labeled examples. Tries to solve: How do | separate
the classes?

o learn p(y|x) directly (logistic regression models)
o learn mappings from inputs to classes (least-squares, decision trees)

@ Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier). Tries to solve: What does each class "look” like?

o Build a model of p(x|y)
o Apply Bayes Rule
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Bayes Classifier

@ Aim to classify text into spam/not-spam (yes c=1; no c=0)

@ Use bag-of-words features, get binary vector x for each email

@ Given features x = [x1, X2, -+ ,xg] T we want to compute class probabilities
using Bayes Rule:
p(x|c)p(c
(el — PXIE)P(E)
p(x)

@ More formally
Class likelihood x prior

osterior = -
P Evidence

@ How can we compute p(x) for the two class case? (Do we need to?)
p(x) = p(x|c = 0)p(c = 0) + p(x|c = 1)p(c = 1)

@ To compute p(c|x) we need: p(x|c) and p(c)
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@ Assume we have two classes: spam and non-spam. We have a
dictionary of D words, and binary features x = [x1, ..., xp] saying
whether each word appears in the e-mail.

e If we define a joint distribution p(c, x1,...,xp), this gives enough
information to determine p(c) and p(x|c).

@ Problem: specifying a joint distribution over D + 1 binary variables
requires 2P11 entries. This is computationally prohbitive and would
require an absurd amount of data to fit.

o We'd like to impose structure on the distribution such that:

@ it can be compactly represented
o learning and inference are both tractable

@ Probabilistic graphical models are a powerful and wide-ranging class
of techniques for doing this. We'll just scratch the surface here, but
you'll learn about them in detail in CSC412/2506.
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@ Naive Bayes makes the assumption that the word features x; are
conditionally independent given the class c.
e This means x; and x; are independent under the conditional
distribution p(x|c).
o Note: this doesn’t mean they're independent. (E.g., “Viagra” and
"cheap” are correlated insofar as they both depend on c.)
e Mathematically,

p(c,x1,...,xp) = p(c)p(x1|c) - - - p(xp|c).

@ Compact representation of the joint distribution
e Prior probability of class: p(c =1) =6¢
o Conditional probability of word feature given class: p(x; = 1|c) = 6jc
e 2D + 1 parameters total
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Bayes Nets (Optional)

@ We can represent this model using an directed graphical model, or
Bayesian network:

@ This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

@ Intuitively, you can think of the edges as reflecting a causal structure.
But mathematically, this doesn't hold without additional assumptions.

@ You'll learn a lot about graphical models in CSC412/2506.

Uof T CSC 411: 13-Probabilistic Models 19/23



Naive Bayes: Learning

@ The parameters can be learned efficiently because the log-likelihood
decomposes into independent terms for each feature.

log p(c”, x1")

'Mz

I
-

(o) =

I
M=

log p(c) H p(x

Il
-

I
M=

log p(c”) + Z log p(x" | )
=1

i=1

D N
Z log p(c?)  +>" > log p(x" | <)
i=1

Jj=1 i=1
~———— | S ——
Bernoulli log-likelihood Bernoulli log-likelihood

of labels for feature x;

@ Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Naive Bayes: Learning

e Want to maximize Z _qlog p( |c )

@ This is a minor variant of our coin flip example. Let
0.6 = p(xj = a| c = b). Note 01, =1 — bpp.

o Log-likelihood:

Zlogp |c))—Zc ()Iog011+2c 1—x')|og(1—911)
i=1
N N

—|—Z(1—c ) Iog910—|—z (1—cl )(1—x )Iog(l—@lo)
i=1 i=1
@ Obtain maximum likelihood estimates by setting derivatives to zero:
Ny Nio

1= ——"7— o= ——7—
YT Nig + Nog N1 + Noo

where N, is the counts for x; = a and ¢ = b.
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Naive Bayes: Inference

@ We predict the category by performing inference in the model.
o Apply Bayes' Rule:
p(c)p(x| <)
2 p(c)p(x] )
C P(OTIR, Pl 1)
e ()T Pl )

@ We need not compute the denominator if we're simply trying to
determine the mostly likely c.

p(c|x) =

@ Shorthand notation:

D
p(c|x) o p(e) [ p(xi | €)
Jj=1
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Naive Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood
e Compute co-occurrence counts of each feature with the labels.
@ Requires only one pass through the data!
@ Test time: apply Bayes' Rule
o Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)
@ We covered the Bernoulli case for simplicity. But our analysis easily
extends to other probability distributions.
@ Unfortunately, it's usually less accurate in practice compared to
discriminative models.

o The problem is the “naive” independence assumption.
o We're covering it primarily as a stepping stone towards latent variable
models.
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