CSC411/2515 Lecture 2: Nearest Neighbors

Roger Grosse, Amir-massoud Farahmand, and Juan Carrasquilla

University of Toronto

Uof T CSC411-Lec2 1/26

Introduction

@ Today (and for the next 5 weeks) we're focused on supervised learning.

@ This means we're given a training set consisting of inputs and corresponding

labels, e.g.

Task Inputs Labels
object recognition image object category
image captioning image caption

document classification text document category
speech-to-text audio waveform text

Uof T CSC411-Lec2 2/26

Input Vectors

What an image looks like to the computer:

3 L7 Y
$4 51 44 69 16 03 33 143

What the computer sees

82% cat
15% dog
2% hat

1% mug

image classification

[Image credit: Andrej Karpathy]

Uof T CSC411-Lec2

Input Vectors

@ Machine learning algorithms need to handle lots of types of data: images,
text, audio waveforms, credit card transactions, etc.

@ Common strategy: represent the input as an input vector in RY

» Representation = mapping to another space that's easy to manipulate
» Vectors are a great representation since we can do linear algebra!

'\7‘ VECTOR
INSTITUTE

Uof T CSC411-Lec2 4/26

Input Vectors

Can use raw pixels:

Images 4= \ectors

255 | 255

255 | 255

255
255

255

- - =
255 | 255 .

255

255

128

128 | 128 (128 | 128

128
128

128

Can do much better if you compute a vector of meaningful features.

UofT CSC411-Lec2 5/26

Input Vectors

@ Mathematically, our training set consists of a collection of pairs of an input
vector x € RY and its corresponding target, or label, t

> Regression: t is a real number (e.g. stock price)
» Classification: t is an element of a discrete set {1,...,C}
» These days, t is often a highly structured object (e.g. image)

@ Denote the training set {(x(1), tM), ... (x(N), (M)}

» Note: these superscripts have nothing to do with exponentiation!

Uof T CSC411-Lec2 6/26

Nearest Neighbors

@ Suppose we're given a novel input vector x we'd like to classify.

@ The idea: find the nearest input vector to x in the training set and copy its
label.

@ Can formalize “nearest” in terms of Euclidean distance

(2 = x|, =

(" Algorithm:)
1. Find example (x*, t*) (from the stored training set) closest to x.
That is:
x* = argmin distance(x\?, x)
x() etrain. set
\ 2. Qutput y =t

@ Note: we don't need to compute the square root. Why?

Uof T CSC411-Lec2 7/26

Nearest Neighbors: Decision Boundaries

We can visualize the behavior in the classification setting using a Voronoi diagram.

Uof T CSC411-Lec2 8/26

Nearest Neighbors: Decision Boundaries

Decision boundary: the boundary between regions of input space assigned to
different categories.

width (cm)

Uof T CSC411-Lec2 9/26

Nearest Neighbors: Decision Boundaries

Example: 3D decision boundary

Uof T CSC411-Lec2 10 /26

k-Nearest Neighbors

[Pic by Olga Veksler]

every example in the blue
shaded area will be
misclassified as the blue class

1NN

.
e ® _ ® _noisysample
. @

every example in the blue every example in the blue
shaded area will be shaded area will be classified
misclassified as the blue class correctly as the red class

o Nearest neighbors sensitive to noise or mis-labeled data (“class noise”).

Solution?
@ Smooth by having k nearest neighbors vote

Algorithm (kNN):
1. Find k examples {x(), t()} closest to the test instance x
2. Classification output is majority class

K
= (2)_¢(n)
y = arg max ; o(t¥®), ¢\)

Uof T CSC411-Lec2

K-Nearest neighbors

k=1

[Image credit: " The Elements of Statistical Learning”]

Uof T CSC411-Lec2 12 /26

K-Nearest neighbors

k=15

[Image credit: " The Elements of Statistical Learning”]

Uof T CSC411-Lec2 13 /26

k-Nearest Neighbors

Tradeoffs in choosing k?

@ Small k

» Good at capturing fine-grained patterns
» May overfit, i.e. be sensitive to random idiosyncrasies in the training
data

@ Llarge k

» Makes stable predictions by averaging over lots of examples
» May underfit, i.e. fail to capture important regularities

@ Rule of thumb: k < sqrt(n), where n is the number of training examples

Uof T CSC411-Lec2 14 /26

K-Nearest neighbors

@ We would like our algorithm to generalize to data it hasn't before.

@ We can measure the generalization error (error rate on new examples) using

a test set.
k = Number of Nearest Neighbors
151 101 69 45 31 21 1" 7 5 3 1
T T O B | 1 1
o
bl Linear
=
0
q
c
g
L 8
g S
=
©
= A
°
s Train
Test
—— Bayes

[Image credit: " The Elements of Statistical Learning”]
Uof T CSC411-Lec2

Validation and Test Sets

@ k is an example of a hyperparameter, something we can't fit as part of the
learning algorithm itself

@ We can tune hyperparameters using a validation set:

| validation

dation | test set

’ training set

| train w/ k =1 }—»‘ err=73 | X
trainw/ k=3 }—»‘ err=1.1 }\/—»

| train w/ k =10 }—>’err=10.5|x

@ The test set is used only at the very end, to measure the generalization
performance of the final configuration.

Uof T CSC411-Lec2 16 / 26

Pitfalls: The Curse of Dimensionality

@ Low-dimensional visualizations are misleading! In high dimensions, “most”
points are far apart.

If we want the nearest neighbor to be closer then ¢, how many points do we
need to guarantee it?

The volume of a single ball of radius € is O(¢9)

The total volume of [0,1]% is 1.

Therefore O ((1)¢) balls are needed to cover the volume.

10

06 08

\ N
\ \
\ \ |
\/ \/

i

02 04

0.0

Neighborhood

Fraction of Volume

[Image credit: " The Elements of Statistical Learning”]
Uof T CSC411-Lec2 17 /26

Pitfalls: The Curse of Dimensionality

@ In high dimensions, “most” points are approximately the same distance.
(Homework question coming up...)

[=0"Y n®g
o ®
] o
]
° (2] >
=}
=]
o)
® 5 &
]

@ Saving grace: some datasets (e.g. images) may have low intrinsic dimension,
i.e. lie on or near a low-dimensional manifold. So nearest neighbors
sometimes still works in high dimensions.

Uof T CSC411-Lec2 18 /26

Pitfalls: Normalization

@ Nearest neighbors can be sensitive to the ranges of different features.

@ Often, the units are arbitrary:

inches
feet

minutes seconds

@ Simple fix: normalize each dimension to be zero mean and unit variance.
l.e., compute the mean y; and standard deviation o}, and take

o X

X =
J .
0j

@ Caution: depending on the problem, the scale might be important!

Uof T CSC411-Lec2

19/26

Pitfalls: Computational Cost

@ Number of computations at training time: 0
@ Number of computations at test time, per query (naive algorithm)

» Calculuate D-dimensional Euclidean distances with N data points:
O(ND)
» Sort the distances: O(N log)

@ This must be done for each query, which is very expensive by the standards
of a learning algorithm!

@ Need to store the entire dataset in memory!

@ Tons of work has gone into algorithms and data structures for efficient
nearest neighbors with high dimensions and/or large datasets.

Uof T CSC411-Lec2 20/26

Example: Digit Classification

@ Decent performance when lots of data

0\ dDd450727%

* Yann LeCunn — MNIST Digit Test Error Rate (%)
Recognition Linear classifier (1-layer NN) 12.0

— Handwritten digits K-nearest-neighbors, Euclidean 5.0

) . K-nearest-neighbors, Euclidean, deskewed 24

— 28x28 pixel images: d = 784 K-NN, Tangent Distance, 16x16 1.1

— 60,000 training samples K-NN, shape context matching 0.67

— 10,000 test samples 1000 RBF + linear classifier 3.6

. . . . SVM deg 4 polynomial 1.1
Nearest neighbour is competitive 2-tayer NN, 300 hidden units .7
2-layer NN, 300 HU, [deskewing] 1.6

LeNet-5, [distortions] 0.8

Boosted LeNet-4, [distortions] 0.7

Uof T CSC411-Lec2 21/26

Example: Digit Classification

@ KNN can perform a lot better with a good similarity measure.

@ Example: shape contexts for object recognition. In order to achieve
invariance to image transformations, they tried to warp one image to match
the other image.

» Distance measure: average distance between corresponding points on
warped images

@ Achieved 0.63% error on MNIST, compared with 3% for Euclidean KNN.

@ Competitive with conv nets at the time, but required careful engineering.

[Belongie, Malik, and Puzicha, 2002. Shape matching and object recognition using shape
contexts.]

Uof T CSC411-Lec2 22/26

Example: 80 Million Tiny Images

@ 80 Million Tiny Images was the
first extremely large image
dataset. It consisted of color
images scaled down to 32 x 32.

@ With a large dataset, you can
find much better semantic
matches, and KNN can do
some surprising things.

@ Note: this required a carefully
chosen similarity metric.

o
S
=3
=)
=1
=3
&
2

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]

Uof T CSC411-Lec2 23/26

Example: 80 Million Tiny Images

Gray scale
input

Gray level

szsilings e

High resolution m a3

color siblings ” i

Avage '
colorization

Proposed
colorizations

[Torralba, Fergus, and Freeman, 2007. 80 Million Tiny Images.]
UofT CSC411-Lec2

Conclusions

@ Simple algorithm that does all its work at test time — in a sense, no
learning!

@ Can control the complexity by varying k
@ Suffers from the Curse of Dimensionality

o Next time: decision trees, another approach to regression and
classification

Uof T CSC411-Lec2 25/26

Uof T CSC411-Lec2 26 /26

	Introduction

