Homework 7

Deadline: Wednesday, Dec. 5, at 11:59pm.

Submission: You need to submit your solutions through MarkUs¹ as the PDF file hw7_writeup.pdf.

Neatness Point: One of the 10 points will be given for neatness. You will receive this point as long as we don't have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the marks will be deducted for each day late, up to a maximum of 3 days. After that, no submissions will be accepted.

Collaboration. Weekly homeworks are individual work. See the Course Information handout² for detailed policies.

1. [5pts] Representer Theorem. In this question, you'll prove and apply a simplified version of the Representer Theorem, which is the basis for a lot of kernelized algorithms. Consider a linear model:

$$\begin{aligned} z &= \mathbf{w}^\top \boldsymbol{\psi}(\mathbf{x}) \\ y &= g(z), \end{aligned}$$

where ψ is a feature map and g is some function (e.g. identity, logistic, etc.). We are given a training set $\{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^N$. We are interested in minimizing the expected loss plus an L_2 regularization term:

$$\mathcal{J}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y^{(i)}, t^{(i)}) + \frac{\lambda}{2} \|\mathbf{w}\|^2,$$

where ${\cal L}$ is some loss function. Let Ψ denote the feature matrix

$$oldsymbol{\Psi} = egin{pmatrix} oldsymbol{\psi}(\mathbf{x}^{(1)})^{ op} \ dots \ oldsymbol{\psi}(\mathbf{x}^{(N)})^{ op} \end{pmatrix}.$$

Observe that this formulation captures a lot of the models we've covered in this course, including linear regression, logistic regression, and SVMs.

(a) [2pts] Show that the optimal weights must lie in the row space of Ψ .

Hint: Given a subspace S, a vector \mathbf{v} can be decomposed as $\mathbf{v} = \mathbf{v}_S + \mathbf{v}_\perp$, where \mathbf{v}_S is the projection of \mathbf{v} onto S, and \mathbf{v}_\perp is orthogonal to S. (You may assume this fact without proof, but you can review it here³.) Apply this decomposition to \mathbf{w} and see if you can show something about one of the two components.

¹https://markus.teach.cs.toronto.edu/csc411-2018-09

²http://www.cs.toronto.edu/~rgrosse/courses/csc411_f18/syllabus.pdf

³https://metacademy.org/graphs/concepts/projection_onto_a_subspace

(b) [3pts] Another way of stating the result from part (a) is that $\mathbf{w} = \mathbf{\Psi}^{\top} \boldsymbol{\alpha}$ for some vector $\boldsymbol{\alpha}$. Hence, instead of solving for \mathbf{w} , we can solve for $\boldsymbol{\alpha}$. Consider the vectorized form of the L_2 regularized linear regression cost function:

$$\mathcal{J}(\mathbf{w}) = \frac{1}{2N} \|\mathbf{t} - \boldsymbol{\Psi}\mathbf{w}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2.$$

Substitute in $\mathbf{w} = \mathbf{\Psi}^{\top} \boldsymbol{\alpha}$, to write the cost function as a function of $\boldsymbol{\alpha}$. Determine the optimal value of $\boldsymbol{\alpha}$. Your answer should be an expression involving λ , \mathbf{t} , and the Gram matrix $\mathbf{K} = \mathbf{\Psi} \mathbf{\Psi}^{\top}$. For simplicity, you may assume that \mathbf{K} is positive definite. (The algorithm still works if \mathbf{K} is merely PSD, it's just a bit more work to derive.)

Hint: the cost function $\mathcal{J}(\alpha)$ is a quadratic function. Simplify the formula into the following form:

$$\frac{1}{2}\boldsymbol{\alpha}^{\mathsf{T}}\mathbf{A}\boldsymbol{\alpha} + \mathbf{b}^{\mathsf{T}}\boldsymbol{\alpha} + c,$$

for some positive definite matrix \mathbf{A} , vector \mathbf{b} and constant c (which can be ignored). You may assume without proof that the minimum of such a quadratic function is given by $\boldsymbol{\alpha} = -\mathbf{A}^{-1}\mathbf{b}$.

- 2. [4pts] Compositional Kernels. One of the most useful facts about kernels is that they can be composed using addition and multiplication. I.e., the sum of two kernels is a kernel, and the product of two kernels is a kernel. We'll show this in the case of kernels which represent dot products between finite feature vectors.
 - (a) **[1pt]** Suppose $k_1(x, x') = \psi_1(x)^\top \psi_1(x')$ and $k_2(x, x') = \psi_2(x)^\top \psi_2(x')$. Let $k_{\rm S}$ be the sum kernel $k_{\rm S}(x, x') = k_1(x, x') + k_2(x, x')$. Find a feature map $\psi_{\rm S}$ such that $k_{\rm S}(x, x') = \psi_{\rm S}(x)^\top \psi_{\rm S}(x')$.
 - (b) **[3pts]** Suppose $k_1(x, x') = \psi_1(x)^\top \psi_1(x')$ and $k_2(x, x') = \psi_2(x)^\top \psi_2(x')$. Let k_P be the product kernel $k_P(x, x') = k_1(x, x') k_2(x, x')$. Find a feature map ψ_P such that $k_P(x, x') = \psi_P(x)^\top \psi_P(x')$.

Hint: For inspiration, consider the quadratic kernel from Lecture 20, Slide 11.