
CSC321 Lecture 16: Learning Long-Term Dependencies

Roger Grosse

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 1 / 1



Overview

Yesterday, we saw how to compute the gradient descent update for an
RNN using backprop through time.

The updates are mathematically correct, but unless we’re very careful,
gradient descent completely fails because the gradients explode or
vanish.

The problem is, it’s hard to learn dependencies over long time
windows.

Today’s lecture is about what causes exploding and vanishing
gradients, and how to deal with them. Or, equivalently, how to learn
long-term dependencies.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 2 / 1



Why Gradients Explode or Vanish

Recall the RNN for machine translation. It reads an entire English
sentence, and then has to output its French translation.

A typical sentence length is 20 words. This means there’s a gap of 20
time steps between when it sees information and when it needs it.

The derivatives need to travel over this entire pathway.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 3 / 1



Why Gradients Explode or Vanish

Recall: backprop through time
Activations:

L = 1

y (t) = L ∂L
∂y (t)

r (t) = y (t) φ′(r (t))

h(t) = r (t) v + z (t+1) w

z (t) = h(t) φ′(z (t))

Parameters:

u =
∑
t

z (t) x (t)

v =
∑
t

r (t) h(t)

w =
∑
t

z (t+1) h(t)

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 4 / 1



Why Gradients Explode or Vanish

Consider a univariate version of the encoder network:

Backprop updates:

h(t) = z (t+1) w

z (t) = h(t) φ′(z (t))

Applying this recursively:

h(1) = wT−1φ′(z (2)) · · ·φ′(z (T ))︸ ︷︷ ︸
the Jacobian ∂h(T )/∂h(1)

h(T )

With linear activations:

∂h(T )/∂h(1) = wT−1

Exploding:

w = 1.1,T = 50 ⇒ ∂h(T )

∂h(1)
= 117.4

Vanishing:

w = 0.9,T = 50 ⇒ ∂h(T )

∂h(1)
= 0.00515

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 5 / 1



Why Gradients Explode or Vanish

More generally, in the multivariate case, the Jacobians multiply:

∂h(T )

∂h(1)
=

∂h(T )

∂h(T−1)
· · · ∂h

(2)

∂h(1)

Matrices can explode or vanish just like scalar values, though it’s
slightly harder to make precise.

Contrast this with the forward pass:

The forward pass has nonlinear activation functions which squash the
activations, preventing them from blowing up.
The backward pass is linear, so it’s hard to keep things stable. There’s
a thin line between exploding and vanishing.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 6 / 1



Why Gradients Explode or Vanish

We just looked at exploding/vanishing gradients in terms of the
mechanics of backprop. Now let’s think about it conceptually.

The Jacobian ∂h(T )/∂h(1) means, how much does h(T ) change when
you change h(1)?

Each hidden layer computes some function of the previous hiddens
and the current input:

h(t) = f (h(t−1), x(t))

This function gets iterated:

h(4) = f (f (f (h(1), x(2)), x(3)), x(4)).

Let’s study iterated functions as a way of understanding what RNNs
are computing.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 7 / 1



Iterated Functions

Iterated functions are complicated. Consider:

f (x) = 3.5 x (1− x)

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 8 / 1



Iterated Functions

An aside:

Remember the Mandelbrot set? That’s based on an iterated
quadratic map over the complex plane:

zn = z2
n−1 + c

The set consists of the values of c for which the iterates stay bounded.

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=321973

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 9 / 1



Iterated Functions

Consider the following iterated function:

xt+1 = x2
t + 0.15.

We can determine the behavior of repeated iterations visually:

The behavior of the system can be summarized with a phase plot:

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 10 / 1



Iterated Functions

Some observations:

Fixed points of f correspond to points where f crosses the line xt+1 = xt .

Fixed points with f ′(xt) > 1 correspond to sources.

Fixed points with f ′(xt) < 1 correspond to sinks.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 11 / 1



Why Gradients Explode or Vanish

Let’s imagine an RNN’s behavior as a dynamical system, which has
various attractors:

– Geoffrey Hinton, Coursera

Within one of the colored regions, the gradients vanish because even
if you move a little, you still wind up at the same attractor.

If you’re on the boundary, the gradient blows up because moving
slightly moves you from one attractor to the other.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 12 / 1



Why Gradients Explode or Vanish

Consider an RNN with tanh activation function:

The function computed by the network:

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 13 / 1



Why Gradients Explode or Vanish

Cliffs make it hard to estimate the true cost gradient. Here are the
loss and cost functions with respect to the bias parameter for the
hidden units:

Generally, the gradients will explode on some inputs and vanish on
others. In expectation, the cost may be fairly smooth.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 14 / 1



Keeping Things Stable

One simple solution: gradient clipping
Clip the gradient g so that it has a norm of at most η:

if ‖g‖ > η:

g← ηg

‖g‖
The gradients are biased, but at least they don’t blow up.

— Goodfellow et al., Deep Learning

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 15 / 1



Keeping Things Stable

Another trick: reverse the input sequence.

This way, there’s only one time step between the first word of the
input and the first word of the output.

The network can first learn short-term dependencies between early
words in the sentence, and then long-term dependencies between later
words.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 16 / 1



Keeping Things Stable

Really, we’re better off redesigning the architecture, since the
exploding/vanishing problem highlights a conceptual problem with
vanilla RNNs.

The hidden units are a kind of memory. Therefore, their default
behavior should be to keep their previous value.

I.e., the function at each time step should be close to the identity
function.
It’s hard to implement the identity function if the activation function is
nonlinear!

If the function is close to the identity, the gradient computations are
stable.

The Jacobians ∂h(t+1)/∂h(t) are close to the identity matrix, so we can
multiply them together and things don’t blow up.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 17 / 1



Keeping Things Stable

Identity RNNs

Use the ReLU activation function
Initialize all the weight matrices to the identity matrix

Negative activations are clipped to zero, but for positive activations,
units simply retain their value in the absence of inputs.

This allows learning much longer-term dependencies than vanilla
RNNs.

It was able to learn to classify MNIST digits, input as sequence one
pixel at a time!

Le et al., 2015. A simple way to initialize
recurrent networks of rectified linear units.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 18 / 1



Long-Term Short Term Memory

Another architecture which makes it easy to remember information
over long time periods is called Long-Term Short Term Memory
(LSTM)

What’s with the name? The idea is that a network’s activations are its
short-term memory and its weights are its long-term memory.
The LSTM architecture wants the short-term memory to last for a long
time period.

It’s composed of memory cells which have controllers saying when to
store or forget information.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 19 / 1



Long-Term Short Term Memory

Replace each single unit in an RNN by a memory block -

ct+1 = ct · forget gate + new input · input gate

i = 0, f = 1⇒ remember the previous
value

i = 1, f = 1⇒ add to the previous value

i = 0, f = 0⇒ erase the value

i = 1, f = 0⇒ overwrite the value

Setting i = 0, f = 1 gives the reasonable
“default” behavior of just remembering things.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 20 / 1



Long-Term Short Term Memory

In each step, we have a vector of memory cells c, a vector of hidden
units h, and vectors of input, output, and forget gates i, o, and f.

There’s a full set of connections from all the inputs and hiddens to
the input and all of the gates:

it
ft
ot
gt

 =


σ
σ
σ

tanh

W

(
yt

ht−1

)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct)

Exercise: show that if ft+1 = 1, it+1 = 0, and ot = 0, the gradients
for the memory cell get passed through unmodified, i.e.

ct = ct+1.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 21 / 1



Long-Term Short Term Memory

Sound complicated? ML researchers thought so, so LSTMs were
hardly used for about a decade after they were proposed.

In 2013 and 2014, researchers used them to get impressive results on
challenging and important problems like speech recognition and
machine translation.

Since then, they’ve been one of the most widely used RNN
architectures.

There have been many attempts to simplify the architecture, but
nothing was conclusively shown to be simpler and better.

You never have to think about the complexity, since frameworks like
TensorFlow provide nice black box implementations.

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 22 / 1



Long-Term Short Term Memory

Visualizations:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Roger Grosse CSC321 Lecture 16: Learning Long-Term Dependencies 23 / 1

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

