
CSC321 Lecture 14: Optimizing the Input

Roger Grosse

Roger Grosse CSC321 Lecture 14: Optimizing the Input 1 / 29



Overview

Recall the computation graph:

From this graph, you could compute ∂L/∂x, but we never made use
of this.

This lecture: lots of fun things you can do by running gradient
descent on the input!

Roger Grosse CSC321 Lecture 14: Optimizing the Input 2 / 29



Overview

Use cases for input gradients:

Visualizing what learned features represent

Visualizing image gradients
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”

Roger Grosse CSC321 Lecture 14: Optimizing the Input 3 / 29



Feature Visualization

Recall: we can understand what first-layer features are doing by
visualizing the weight matrices.

Higher-level weight matrices are hard to interpret.

Fully connected
Convolutional

826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

The better the input matches these weights, the more the feature
activates.

Obvious generalization: visualize higher-level features by seeing what
inputs activate them.

Roger Grosse CSC321 Lecture 14: Optimizing the Input 4 / 29



Feature Visualization

One way to formalize: pick the images in the training set which
activate a unit most strongly.

Here’s the visualization for layer 1:

Roger Grosse CSC321 Lecture 14: Optimizing the Input 5 / 29



Feature Visualization

Layer 3:

Roger Grosse CSC321 Lecture 14: Optimizing the Input 6 / 29



Feature Visualization

Layer 4:

Roger Grosse CSC321 Lecture 14: Optimizing the Input 7 / 29



Feature Visualization

Layer 5:

Roger Grosse CSC321 Lecture 14: Optimizing the Input 8 / 29



Feature Visualization

Higher layers seem to pick up more abstract, high-level information.

Problems?

Can’t tell what the unit is actually responding to in the image.
We may read too much into the results, e.g. a unit may detect red, and
the images that maximize its activation will all be stop signs.

Can use input gradients to diagnose what the unit is responding to.
Two possibilities:

See how to change an image to increase a unit’s activation
Optimize an image from scratch to increase a unit’s activation

Roger Grosse CSC321 Lecture 14: Optimizing the Input 9 / 29



Feature Visualization

Higher layers seem to pick up more abstract, high-level information.

Problems?

Can’t tell what the unit is actually responding to in the image.
We may read too much into the results, e.g. a unit may detect red, and
the images that maximize its activation will all be stop signs.

Can use input gradients to diagnose what the unit is responding to.
Two possibilities:

See how to change an image to increase a unit’s activation
Optimize an image from scratch to increase a unit’s activation

Roger Grosse CSC321 Lecture 14: Optimizing the Input 9 / 29



Feature Visualization

Higher layers seem to pick up more abstract, high-level information.

Problems?

Can’t tell what the unit is actually responding to in the image.
We may read too much into the results, e.g. a unit may detect red, and
the images that maximize its activation will all be stop signs.

Can use input gradients to diagnose what the unit is responding to.
Two possibilities:

See how to change an image to increase a unit’s activation
Optimize an image from scratch to increase a unit’s activation

Roger Grosse CSC321 Lecture 14: Optimizing the Input 9 / 29



Overview

Use cases for input gradients:

Visualizing what learned features represent

Visualizing image gradients
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”

Roger Grosse CSC321 Lecture 14: Optimizing the Input 10 / 29



Feature Visualization

Input gradients can be hard to interpret.

Take a good object recognition conv net (Alex Net) and compute the
gradient of log p(y = “cat”|x):

Original image

Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the 
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:

Gradient for “cat”

Typical Gradient of a Neuron

• Visualize the gradient of a particular neuron with respect to the 
input x

• Do a forward pass:

• Compute the gradient of a particular neuron using backprop:

The full explanation is beyond the scope of this course.

Part of it is that the network tries to detect cats everywhere; a pixel
may be consistent with cats in one location, but inconsistent with cats
in other locations.

Roger Grosse CSC321 Lecture 14: Optimizing the Input 11 / 29



Feature Visualization

Guided backprop is a total hack to prevent this cancellation.
Do the backward pass as normal, but apply the ReLU nonlinearity to
all the activation error signals.

y = ReLU(z) z̄ =

{
ȳ if z > 0 and ȳ > 0

0 otherwise

Note: this isn’t really the gradient of anything!
We want to visualize what excites a given unit, not what suppresses it.
Results

Guided Backpropagation

Backprop Guided Backprop

Roger Grosse CSC321 Lecture 14: Optimizing the Input 12 / 29



Guided BackpropGuided Backpropagation

Springerberg et al, Striving for Simplicity: The All Convolutional Net (ICLR 2015 workshops)

Roger Grosse CSC321 Lecture 14: Optimizing the Input 13 / 29



Overview

Use cases for input gradients:

Visualizing what learned features represent

Visualizing image gradients
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”

Roger Grosse CSC321 Lecture 14: Optimizing the Input 14 / 29



Gradient Ascent on Images

Can do gradient ascent on an image to maximize the activation of a
given neuron.

Requires a few tricks to make this work; see
https://distill.pub/2017/feature-visualization/

Roger Grosse CSC321 Lecture 14: Optimizing the Input 15 / 29

https://distill.pub/2017/feature-visualization/


Gradient Ascent on Images

Roger Grosse CSC321 Lecture 14: Optimizing the Input 16 / 29



Gradient Ascent on Images

Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/

Roger Grosse CSC321 Lecture 14: Optimizing the Input 17 / 29

https://distill.pub/2017/feature-visualization/


Gradient Ascent on Images

Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/

Roger Grosse CSC321 Lecture 14: Optimizing the Input 18 / 29

https://distill.pub/2017/feature-visualization/


Overview

Use cases for input gradients:

Visualizing what learned features represent

Visualizing image gradients
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”

Roger Grosse CSC321 Lecture 14: Optimizing the Input 19 / 29



Adversarial Examples

One of the most surprising findings about neural nets has been the
existence of adversarial inputs, i.e. inputs optimized to fool an
algorithm.
Given an image for one category (e.g. “cat”), compute the image
gradient to maximize the network’s output unit for a different
category (e.g. “dog”)

Perturb the image very slightly in this direction, and chances are, the
network will think it’s a dog!
Works slightly better if you take the sign of the entries in the gradient;
this is called the fast gradient sign method.

Roger Grosse CSC321 Lecture 14: Optimizing the Input 20 / 29



Adversarial Examples

The following adversarial examples are misclassified as ostriches.
(Middle = perturbation ×10.)

Roger Grosse CSC321 Lecture 14: Optimizing the Input 21 / 29



Adversarial Examples

2013: ha ha, how cute!

The paper which introduced adversarial examples was titled “Intriguing
Properties of Neural Networks.”

2018: serious security threat
Nobody has found a reliable method yet to defend against them.

7 of 8 proposed defenses accepted to ICLR 2018 were cracked within
days.

Adversarial examples transfer to different networks trained on a totally
separate training set!
You don’t need access to the original network; you can train up a new
network to match its predictions, and then construct adversarial
examples for that.

Attack carried out against proprietary classification networks accessed
using prediction APIs (MetaMind, Amazon, Google)

Roger Grosse CSC321 Lecture 14: Optimizing the Input 22 / 29



Adversarial Examples

2013: ha ha, how cute!

The paper which introduced adversarial examples was titled “Intriguing
Properties of Neural Networks.”

2018: serious security threat
Nobody has found a reliable method yet to defend against them.

7 of 8 proposed defenses accepted to ICLR 2018 were cracked within
days.

Adversarial examples transfer to different networks trained on a totally
separate training set!
You don’t need access to the original network; you can train up a new
network to match its predictions, and then construct adversarial
examples for that.

Attack carried out against proprietary classification networks accessed
using prediction APIs (MetaMind, Amazon, Google)

Roger Grosse CSC321 Lecture 14: Optimizing the Input 22 / 29



Adversarial Examples

You can print out an adversarial image and take a picture of it, and it
still works!

Can someone paint over a stop sign to fool a self-driving car?

Roger Grosse CSC321 Lecture 14: Optimizing the Input 23 / 29



Adversarial Examples

An adversarial example in the physical world (network thinks it’s a
gun, from a variety of viewing angles!)

Roger Grosse CSC321 Lecture 14: Optimizing the Input 24 / 29



Overview

Use cases for input gradients:

Visualizing what learned features represent

Visualizing image gradients
Optimizing an image to maximize activations

Adversarial inputs

“Deep Dream”

Roger Grosse CSC321 Lecture 14: Optimizing the Input 25 / 29



Deep Dream

Start with an image, and run a conv net on it.

Pick a layer in the network.

Change the image such that units which were already highly activated
get activated even more strongly. “Rich get richer.”

I.e., set h = h, and then do backprop.
Aside: this is a situation where you’d pass in something other than 1 to
backward pass in autograd.

Repeat.

This will accentuate whatever features of an image already kind of
resemble the object.

Roger Grosse CSC321 Lecture 14: Optimizing the Input 26 / 29



Deep Dream

Roger Grosse CSC321 Lecture 14: Optimizing the Input 27 / 29



Deep Dream

Roger Grosse CSC321 Lecture 14: Optimizing the Input 28 / 29



Deep Dream Deep Dream

CSC321: Intro to Machine Learning and Neural Networks, Winter 2016

Michael Guerzhoy

Roger Grosse CSC321 Lecture 14: Optimizing the Input 29 / 29


