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Midterm
@ Tuesday, March 6, during class
@ 50 minutes
@ What you're responsible for:
o Lectures, up through L12 (this one)
e Tutorials, up through T4 (this week)
o Weekly homeworks, up through HW6
e Programming assignments, up through PA2
@ Emphasis on concepts covered in multiple of the above
@ There will be some conceptual questions and some mathematical
questions (similar to individual steps of the weekly homeworks)
@ No formal proofs necessary, but you should justify your answers.

@ Practice exams will be posted.
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Overview

@ Object recognition is the task of identifying which object category is
present in an image.

@ It's challenging because objects can differ widely in position, size,
shape, appearance, etc., and we have to deal with occlusions, lighting
changes, etc.

@ Why we care about it

e Direct applications to image search
o Closely related to object detection, the task of locating all instances of
an object in an image

o E.g., a self-driving car detecting pedestrians or stop signs

@ For the past 5 years, all of the best object recognizers have been
various kinds of conv nets.
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Recognition Datasets

@ In order to train and evaluate a machine learning system, we need to
collect a dataset. The design of the dataset can have major
implications.

@ Some questions to consider:

e Which categories to include?

e Where should the images come from?

e How many images to collect?

e How to normalize (preprocess) the images?
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Image Classification

@ Conv nets are just one of many possible approaches to image
classification. However, they have been by far the most successful for
the last 5 years.

@ Biggest image classification “advances” of the last two decades

o Datasets have gotten much larger (because of digital cameras and the

Internet)
o Computers got much faster

@ Graphics processing units (GPUs) turned out to be really good at
training big neural nets; they're generally about 30 times faster than

CPUs.
e As a result, we could fit bigger and bigger neural nets.
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N
MNIST Dataset

@ MNIST dataset of handwritten digits
Categories: 10 digit classes
Source: Scans of handwritten zip codes from envelopes
e Size: 60,000 training images and 10,000 test images, grayscale, of size
28 x 28
Normalization: centered within in the image, scaled to a consistent
size
@ The assumption is that the digit recognizer would be part of a larger
pipeline that segments and normalizes images.
@ In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.
o It was good enough to be used in a system for automatically reading
numbers on checks.
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-
ImageNet
ImageNet is the modern object recognition benchmark dataset. It was

introduced in 2009, and has led to amazing progress in object recognition
since then.

ILSVRC
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-
ImageNet

@ Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual benchmark competition for object recognition algorithms

@ Design decisions

o Categories: Taken from a lexical database called WordNet

o WordNet consists of “synsets”, or sets of synonymous words
@ They tried to use as many of these as possible; almost 22,000 as of
2010
o Of these, they chose the 1000 most common for the ILSVRC
@ The categories are really specific, e.g. hundreds of kinds of dogs
o Size: 1.2 million full-sized images for the ILSVRC
e Source: Results from image search engines, hand-labeled by
Mechanical Turkers

o Labeling such specific categories was challenging; annotators had to be
given the WordNet hierarchy, Wikipedia, etc.

o Normalization: none, although the contestants are free to do
preprocessing
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-
ImageNet
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-
ImageNet

Size on disk:

MNIST |mageNet
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N
LeNet

Here's the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:
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Size of a Conv Net

@ Ways to measure the size of a network:
o Number of units. This is important because
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Size of a Conv Net

@ Ways to measure the size of a network:

o Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).
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Size of a Conv Net

@ Ways to measure the size of a network:

o Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

o Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.
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Size of a Conv Net

@ Ways to measure the size of a network:

o Number of units. This is important because the activations need to
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Size of a Conv Net

@ Ways to measure the size of a network:

o Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

o Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

o Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).
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Size of a Conv Net

@ Ways to measure the size of a network:

o Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

o Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

o Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

@ We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

@ The story for conv nets is more complicated.
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Size of a Conv Net
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Size of a Conv Net
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Size of a Conv Net
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |

fully connected layer convolution layer

# output units WHI WHI
# weights W2H?[J K21J
# connections W2H?1J WHK?1J
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units | # connections | # weights
C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
c3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output | fully connected 10 840 840

Conclusions?
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Size of a Conv Net

@ Rules of thumb:
e Most of the units and connections are in the convolution layers.
o Most of the weights are in the fully connected layers.

o If you try to make layers larger, you'll run up against various resource
limitations (i.e. computation time, memory)

@ Conv nets have gotten a LOT larger since 1998!
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)
classification task digits digits objects
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)

classification task digits digits objects
categories 10 10 1,000
image size 16 x 16 28 x 28 256 x 256 x 3
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)

classification task digits digits objects
categories 10 10 1,000
image size 16 x 16 28 x 28 256 x 256 x 3
training examples 7,291 60,000 1.2 million
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)

classification task digits digits objects
categories 10 10 1,000
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)

classification task digits digits objects
categories 10 10 1,000
image size 16 x 16 28 x 28 256 x 256 x 3
training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000
parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million
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Size of a Conv Net

LeNet (1989) LeNet (1998) AlexNet (2012)

classification task digits digits objects
categories 10 10 1,000
image size 16 x 16 28 x 28 256 x 256 x 3
training examples 7,291 60,000 1.2 million
units 1,256 8,084 658,000
parameters 9,760 60,000 60 million
connections 65,000 344,000 652 million
total operations 11 billion 412 billion 200 quadrillion (est.)
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N
AlexNet

@ AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to
guess the right category).

204 Joa \dense

——>
dense dense|

1000

192 128 Max
Max 128 Max pooling
pooling pooling

204 2048

(Krizhevsky et al., 2012)
@ They used lots of tricks we've covered in this course (ReLU units, weight decay,
data augmentation, SGD with momentum, dropout)

@ AlexNet's stunning performance on the ILSVRC is what set off the deep learning
boom of the last 5 years.
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-
GoogleNet

GoogleNet, 2014.

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet
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-
GoogleNet

@ They were really aggressive about cutting the number of parameters.
e Motivation: train the network on a large cluster, run it on a cell phone
@ Memory at test time is the big constraint.
@ Having lots of units is OK, since the activations only need to be stored
at training time (for backpropagation).
@ Parameters need to be stored both at training and test time, so these
are the memory bottleneck.
e How they did it
o No fully connected layers (remember, these have most of the weights)
@ Break down convolutions into multiple smaller convolutions (since this
requires fewer parameters total)
o GoogleNet has “only” 2 million parameters, compared with 60 million
for AlexNet
e This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)
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Classification

ImageNet results over the years. Note that errors are top-5 errors (the network gets to

make 5 guesses).

Year Model

2010 Hand-designed descriptors + SVM
2011 Compressed Fisher Vectors + SVM
2012  AlexNet

2013  a variant of AlexNet

2014  GoogleNet

2015 deep residual nets

Top-5 error

28.2%
25.8%
16.4%
11.7%
6.6%
4.5%

We'll cover deep residual nets later in the course, since they require an idea we haven't

covered yet.

Human-performance is around 5.1%.

They stopped running the object recognition competition because the performance is

already so good.
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