CSC321 Lecture 4: Learning a Classifier J

Roger Grosse

CSC321 Lecture 4: Learning a Classifier 1/31

Overview

o Last time: binary classification, perceptron algorithm
@ Limitations of the perceptron

e no guarantees if data aren’t linearly separable
e how to generalize to multiple classes?
o linear model — no obvious generalization to multilayer neural networks

@ This lecture: apply the strategy we used for linear regression

o define a model and a cost function
e optimize it using gradient descent

CSC321 Lecture 4: Learning a Classifier 2/31

Overview

Design choices so far
@ Task: regression, binary classification, multiway classification
e Model/Architecture: linear, log-linear
@ Loss function: squared error, 0-1 loss, cross-entropy, hinge loss
°

Optimization algorithm: direct solution, gradient descent,
perceptron

CSC321 Lecture 4: Learning a Classifier 3/31

Overview
@ Recall: binary linear classifiers. Targets t € {0,1}

z=w'x+b

|1 ifz>0
Y710 ifz<o0

@ Goal from last lecture: classify all training examples correctly
o But what if we can't, or don't want to?

@ Seemingly obvious loss function: 0-1 loss

0 fy=t
Eoﬂ%ﬂz{l Hi#t
= 1yze.

CSC321 Lecture 4: Learning a Classifier 4 /31

|
Attempt 1: 0-1 loss

@ As always, the cost £ is the average loss over training examples; for
0-1 loss, this is the error rate:

N

1
£= 13 Lo
i=1

(I (N - N

Roger Grosse CSC321 Lecture 4: Learning a Classifier 5/31

-
Attempt 1: 0-1 loss

@ Problem: how to optimize?

@ Chain rule:

OLo—1 _ OLy—1 Oz
ow, 0z 0w,

CSC321 Lecture 4: Learning a Classifier 6 /31

-
Attempt 1: 0-1 loss

@ Problem: how to optimize?

@ Chain rule:

OLo—1 _ OLy—1 Oz
ow, 0z 0w,

@ But 0Ly_1/0z is zero everywhere it's defined!

e 0Ly_1/0w; = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
o The gradient descent update is a no-op.

CSC321 Lecture 4: Learning a Classifier 6 /31

-
Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as a surrogate loss function.

@ We already know how to fit a linear regression model. Can we use
this instead?

y = wix+b
1
Lsn(y.t) = 5(y — 2

@ Doesn't matter that the targets are actually binary.

@ Threshold predictions at y = 1/2.

CSC321 Lecture 4: Learning a Classifier 7/31

-
Attempt 2: Linear Regression

The problem:

large
residual

@ The loss function hates when you make correct predictions with high
confidence!

o If t =1, it's more unhappy about y = 10 than y = 0.

CSC321 Lecture 4: Learning a Classifier 8 /31

-
Attempt 3: Logistic Activation Function

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoidal, or 0
S-shaped, function: 0

1 0.2
&)= T

@ A linear model with a logistic nonlinearity is known as log-linear:

o =6 -4 -2 [2 4 6

z=w'x+b

y =0(2)
1
Lse(y. 1) = 5y —)2
@ Used in this way, o is called an activation function, and z is called the

logit.
CSC321 Lecture 4: Learning a Classifier 9 /31

-
Attempt 3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z)

0.5

0.4
0.3

oL OL Oz

0.2

loss

0.1

0.0
-0.1

Roger Grosse CSC321 Lecture 4: Learning a Classifier

w0z 0w,

oL

Wi W — oo —

Ow;

10 /31

-
Attempt 3: Logistic Activation Function

The problem:
(plot of Lgg as a function of z)

05—
0.4
0.3 8£ 6£ 82
§ o2 ow; 0z Ow;
0.1
0.0 . - 8[,
P\ Wi W, —
-0.1 \ J J 8Wj
05— =6 & 2 o0 2

@ In gradient descent, a small gradient (in magnitude) implies a small
step.

@ If the prediction is really wrong, shouldn't you take a large step?

CSC321 Lecture 4: Learning a Classifier 10 / 31

Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

CSC321 Lecture 4: Learning a Classifier 11 /31

Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

@ Cross-entropy loss captures this intuition:

5

4
[—logy ift=1 £
et ={ Ty oo P\ =0
52
= —tlogy — (1 —t)log(1—y) %
Y1
8.0 0.2 0.4 0.6 0.8 1.0

CSC321 Lecture 4: Learning a Classifier 11 /31

Logistic Regression

Logistic Regression:

— logistic + CE

z=w'x+b
y=o0(z)
1
14+ e 2
Lcg = —tlogy — (1 —t)log(l —y)

[[gradient derivation in the notes]]

CSC321 Lecture 4: Learning a Classifier 12 /31

Logistic Regression

@ Problem: what if t =1 but you're really confident it’s a negative
example (z < 0)?

o If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

Lcog = —tlogy — (1 —t)log(l—y) = computes log0

CSC321 Lecture 4: Learning a Classifier 13 /31

Logistic Regression

@ Problem: what if t =1 but you're really confident it’s a negative
example (z < 0)?

o If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

Lcog = —tlogy — (1 —t)log(l—y) = computes log0

@ Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

Lice(z,t) = Log(o(z),t) = tlog(l+ e %) + (1 — t) log(1 + &%)

@ Numerically stable computation:
E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)

CSC321 Lecture 4: Learning a Classifier 13 /31

Logistic Regression

Comparison of loss functions:

3.0 ——
—— least squares
2.5 b — logistic + LS
— logistic + CE
2.0 1
%))
5 1.51
1.0
0.51
0.0 : 3
-3 -2 -1 0 1 2 3
z

CSC321 Lecture 4: Learning a Classifier 14 / 31

Logistic Regression

Comparison of gradient descent updates:

@ Linear regression:
N
W W — Zé(y(f) _ t(i))x(i)
o Logistic regression:

N
a i i i

i=1

CSC321 Lecture 4: Learning a Classifier 15 / 31

Logistic Regression

Comparison of gradient descent updates:

@ Linear regression:
N
W W — Zé(y(f) _ t(i))x(i)
o Logistic regression:

N
a i i i

i=1

@ Not a coincidence! These are both examples of matching loss
functions, but that's beyond the scope of this course.

CSC321 Lecture 4: Learning a Classifier 15 / 31

-
Hinge Loss

@ Another loss function you might encounter is hinge loss. Here, we take
t € {—1,1} rather than {0, 1}.

Lu(y,t) = max(0,1 — ty)

@ This is an upper bound on 0-1 loss (a 30
useful property for a surrogate loss Js :E:;i’;&"icg
. . \\ — hinge
function). R
2.0

@ A linear model with hinge loss is called
a support vector machine. You already

know enough to derive the gradient 1.0
descent update rules! 0.5 \N

@ Very different motivations from logistic S 1 3 3
regression, but similar behavior in z
practice.

CSC321 Lecture 4: Learning a Classifier 16 / 31

Logistic Regression

Comparison of loss functions:

3.0 —
—— least squares
2.5 b — logistic + LS
— logistic + CE
—— hinge
2.0 1
%))
5 1.51
1.0
0.51 B\ N S
0.0 ‘ ‘
-3 1 2 3

CSC321 Lecture 4: Learning a Classifier 17 / 31

Multiclass Classification

@ What about classification tasks with more than two categories?

buzen 1233

36294977659

427N 712839

P8378 49497

Roger Grosse CSC321 Lecture 4: Learning a Classifier 18 / 31

Multiclass Classification

o Targets form a discrete set {1,..., K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0)

~
entry k is 1

CSC321 Lecture 4: Learning a Classifier 19 / 31

Multiclass Classification

@ Now there are D input dimensions and K output dimensions, so we
need K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ Linear predictions:

ZK = Z Wi Xj + by

@ Vectorized:

CSC321 Lecture 4: Learning a Classifier 20 / 31

Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

ek

yk = softmax(zi, ..., zx)k = e
k/

@ The inputs zx are called the logits.
@ Properties:

o Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)

o If one of the z;'s is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)

o Exercise: how does the case of K = 2 relate to the logistic function?

o Note: sometimes o(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.

CSC321 Lecture 4: Learning a Classifier 21 /31

Multiclass Classification

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(yt) == tklogyk
k=1

= —t' (logy),

where the log is applied elementwise.

@ Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

CSC321 Lecture 4: Learning a Classifier 22 /31

Multiclass Classification

o Multiclass logistic regression:

z=Wx-+b

y = softmax(z)

Log = —t' (logy)
@ Tutorial: deriving the gradient descent updates

OLce
oz

y—t

CSC321 Lecture 4: Learning a Classifier 23 /31

Convex Functions

@ Recall: a set S is convex if for any xg,x; € S,
(1=XNxo+Ax; €S for0< A< 1
@ A function f is convex if for any xq,x; in the domain of f,
(1= A)xo+ Ax1) < (1 — A)f(xo) + Af(x1)

o Equivalently, the set of

points lying above the (i;?(‘)":’j()m“) N — ./
graph of f is convex. ' 5 ' !
@ Intuitively: the function
is bowl-shaped. =Nz | PN
+ Axy) N ;i ;
xO (1 -)\)JL’(] ml

CSC321 Lecture 4: Learning a Classifier 24 /31

Convex Functions

@ We just saw that the
least-squares loss
function %(y —t)?is
convex as a function of y

@ For a linear model,
z=w'x+ bis a linear
function of w and b. If
the loss function is
convex as a function of
z, then it is convex as a
function of w and b.

CSC321 Lecture 4: Learning a Classifier

(1 — \)L(wo)
+ AL(wy)

L((1 = N)wy
+ Awy)

25 /31

Convex Functions

Which loss functions are convex?

3.0 _
—— least squares
2.5 —— logistic + LS
—— logistic + CE
—— hinge
2.0 1
%))
5 1.51
1.0
0.5 1 e\ N S
0.0 T T N ; -
-3 -2 -1 0 1 2 3

CSC321 Lecture 4: Learning a Classifier 26 / 31

Convex Functions

Why we care about convexity
@ All critical points are minima

o Gradient descent finds the optimal solution (more on this in a later
lecture)

CSC321 Lecture 4: Learning a Classifier 27 /31

-
Gradient Checking

@ We've derived a lot of gradients so far. How do we know if they're
correct?
@ Recall the definition of the partial derivative:

f(Xl,...,X,'th,...,XN)*f(Xl,...,X,',...,XN)

0 .
6—Xff(x1,...,xm) = hlﬁqo

@ Check your derivatives numerically by plugging in a small value of h,
e.g. 10710 This is known as finite differences.

CSC321 Lecture 4: Learning a Classifier 28 /31

-
Gradient Checking

@ Even better: the two-sided definition

T f(Xl,...,X;—I—h,...,XN)—f(Xl,...,X,'—h,...,XN)
B O xw) = Jlim, 2h

— exact
— one-sided
— two-sided

x—h T r+h

CSC321 Lecture 4: Learning a Classifier 29 /31

-
Gradient Checking

Run gradient checks on small, randomly chosen inputs

@ Use double precision floats (not the default for most deep learning
frameworks!)

@ Compute the relative error:

|a — b
|al + | b]

The relative error should be very small, e.g. 107°

CSC321 Lecture 4: Learning a Classifier 30 /31

-
Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.
o But:

e They might work much better if the derivatives are correct.
o Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.

CSC321 Lecture 4: Learning a Classifier 31/31

