CSC321 Lecture 3: Linear Classifiers
What good is a single neuron?

Roger Grosse
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Overview

o Classification: predicting a discrete-valued target

@ In this lecture, we focus on binary classification: predicting a
binary-valued target
@ Examples
e predict whether a patient has a disease, given the presence or absence
of various symptoms

o classify e-mails as spam or non-spam
e predict whether a financial transaction is fraudulent
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Overview

Design choices so far
@ Task: regression, classification
e Model/Architecture: linear
@ Loss function: squared error
o

Optimization algorithm: direct solution, gradient descent,
perceptron
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Overview

Binary linear classification

o classification: predict a discrete-valued target
@ binary: predict a binary target t € {0,1}
e Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

@ linear: model is a linear function of x, followed by a threshold:

z=w'x+b

1 itz>r
Y= 0 ifz<r

Roger Grosse (CSC321 Lecture 3: Linear Classifiers — or — 4 /24



Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.

L
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
L

Eliminating the bias

@ Add a dummy feature xp which always takes the value 1. The weight
wp is equivalent to a bias.
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Some simplifications

Eliminating the threshold
@ We can assume WLOG that the threshold r = 0:

wix+b>r < wix+b—r>0.
L

Eliminating the bias

@ Add a dummy feature xp which always takes the value 1. The weight
wp is equivalent to a bias.

Simplified model

Z WTX
1 ifz>0
y 0 ifz<0
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As a neuron

@ This is basically a special case of the neuron-like processing unit from

Lecture 1.
. i'th weight
4 output output b'?s tihweig Tg(z)

wy wy| W weights v ' / .

y=g|(b+ E TiW; |
inputs - \ )

T i
T1 X2 T3 l <
nonlinearity i'th input

@ Today's question: what can we do with a single unit?
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Examples

NOT
Xop X1 |t
1 011
1 110
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Examples

NOT
Xop X1 |t
1 011
1 110

b>0
b+w<0
b=1 w= -2
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Examples

AND
xXg X1 X2 |t
1 0 010
10 1|0
11 010
11 111
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Examples

AND
xXg X1 X2 |t
1 0 0]o0 b<0
10 110
1 1 010
1 1 1|1
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Examples

AND
xXg X1 X2 |t
1 0 0]o0 b<0
10 110 b+w <0
1 1 010
1 1 1|1
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Examples

AND
xXg X1 X2 |t
1 0 0]o0 b<0
10 110 b+wy <0
11 00 b+w; <0
1 1 1|1
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Examples

AND
xXg X1 X2 |t
1 0 0]o0 b<0
10 110 b+wy <0
11 00 b+w; <0
1 1 1|1

b+ w;+wy >0
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Examples

AND
xXg X1 X2 |t
1 0 0]o0 b<0
10 110 b+wy <0
11 00 b+w; <0
1 1 1|1

b+ w;+wy >0

b=-15, w1 =1 wm=1
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The Geometric Picture

Recall from linear regression:

Data space Weight space
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The Geometric Picture
Input Space, or Data Space

1

o

Here we're visualizing the NOT example
Training examples are points
Hypotheses are half-spaces whose boundaries pass through the origin

The boundary is the decision boundary
e In 2-D, it's a line, but think of it as a hyperplane

o If the training examples can be separated by a linear decision rule,
they are linearly separable.
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The Geometric Picture

Weight Space

wy >0

wo wo + wyp <0

@ Hypotheses are points

@ Training examples are half-spaces whose boundaries pass through the
origin

@ The region satisfying all the constraints is the feasible region; if this
region is nonempty, the problem is feasible
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The Geometric Picture

@ The AND example requires three dimensions, including the dummy one.

@ To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

@ The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.
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The Geometric Picture

Visualizations of the AND example

Data Space Weight Space
) \“ W2
+ y

A

w1
<=

Slice for xp =1 Slice for wg = —1

\/

What happened to the fourth constraint?
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The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

T2

T
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The Perceptron Learning Rule

@ Let's mention a classic classification algorithm from the 1950s: the
perceptron

- Frank Rosenblatt, with the image sensor (left) of the Mark | Perceptron40
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The Perceptron Learning Rule

The idea:
olft=landz=w'x>0
e then y =1, so no need to change anything.
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The Perceptron Learning Rule

The idea:
olft=landz=w'x>0
e then y =1, so no need to change anything.
elft=1and z<0
e then y =0, so we want to make z larger.
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The Perceptron Learning Rule

The idea:
olft=landz=w'x>0
e then y =1, so no need to change anything.
elft=1andz<0

e then y =0, so we want to make z larger.
e Update:
w —w+x
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The Perceptron Learning Rule

The idea:
olft=landz=w'x>0
e then y =1, so no need to change anything.
elft=1andz<0

e then y =0, so we want to make z larger.
e Update:
w —w+x

e Justification:

w'x = (w+x)"x
=w'x+x"x

=w'x+ x|
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The Perceptron Learning Rule

For convenience, let targets be {—1, 1} instead of our usual {0,1}.

Perceptron Learning Rule:

Repeat:
For each training case (x(), (1)),
) wTx()
If z(0¢() < 0,
w  w + t{x()

Stop if the weights were not updated in this epoch.
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The Perceptron Learning Rule

Compare:

@ SGD for linear regression
w<—w—ay —t)x

@ perceptron
z+—w'x
If zt <0,

W — W+ tx
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The Perceptron Learning Rule

@ Under certain conditions, if the problem is feasible, the perceptron rule
is guaranteed to find a feasible solution after a finite number of steps.

@ If the problem is infeasible, all bets are off.
e Stay tuned...
@ The perceptron algorithm caused lots of hype in the 1950s, then
people got disillusioned and gave up on neural nets.

@ People were discouraged about fundamental limitations of linear
classifiers.
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Limits of Linear Classification

@ Visually, it's obvious that XOR is not linearly separable. But how to
show this?
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Limits of Linear Classification

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1, €S = M +(1-A)xxe€8S for0< A< L

@ A simple inductive argument shows that for x;,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+ -+ Ayxy €S for \j >0, M +---Ay=1.
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Limits of Linear Classification

Showing that XOR is not linearly separable

@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

@ But the intersection can't lie in both half-spaces. Contradiction!
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Limits of Linear Classification

A more troubling example

CCm T mw w10 pattern A s TwsTT7T  pattern B
O w0 pattern A O rmm s pattern B

e T Pattern A o pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

Roger Grosse (CSC321 Lecture 3: Linear Classifiers — or — 23 /24



Limits of Linear Classification
A more troubling example

CCm T mw w10 pattern A s TwsTT7T  pattern B
O w0 pattern A O rmm s pattern B

e T Pattern A o pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Credit= Geoffrey Hinton
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Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1

d(x)=| x

X1X2
X x| ¢1(x) ¢a(x) ¢3(x) | ¢
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)

@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.
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