Lecture 17: ResNets and Attention

Roger Grosse

1 Introduction

We have two unrelated agenda items for today. First, we’ll revisit image
classification in light of what we’ve learned about RNNs. In particular, we
saw that one way to make it easier for RNNs to learn long-distance depen-
dencies is to make it easy for each layer to represent the identity function,
which lets them pass information unmodified through many layers. This is
a useful thing for the network to do, and it also helps keep the gradients
from exploding or vanishing. If we want to train image classifiers with a
ridiculously large number of layers, we need to use these sorts of tricks. The
deep residual network (ResNet) is a particularly elegant architecture which
lets information pass directly through; it can be used to train networks with
hundreds, or even thousands of layers, and is the current state-of-the-art for
a variety of computer vision tasks.

Our second agenda item is attention. The problem with the encoder-
decoder architecture for translation is that all the information about the
input sentence needs to be stored in the vector of hidden activations. This
has a fixed dimension (typically on the order of 1000), i.e. it doesn’t grow
with the length of the sentence. It’s pretty neat that summarizing the
meaning of a sentence as a vector works at all, but this strategy hits is
limits once the sentences are about 20 words or so, a fairly typical sentence
length. Attention-based architectures allow the network to refer back to the
input sentence as they produce their output, thereby reducing the pressure
on the hidden units and allowing them to easily handle very long sentences.

2 ResNets

Before 2015, the GoogLeNet (Inception) architecture set the standard for
a deep conv net. It was about 20 layers deep, not counting pooling. In
2015, the new state-of-the-art on ImageNet was the deep residual network
(ResNet), which had the distinction that that it was 150 layers deep. When
we discussed image classification, I promised we’d come back to ResNets
once we covered a key conceptual idea. That idea was exploding and van-
ishing gradients.

Recall that the Jacobian dh(™) /9h(}) for an RNN is the product of the
Jacobians of individual layers:

on™ on™) oh®

onh®M — ohT-1 Hh(

Multiplying together lots of matrices causes the Jacobian to explode or
vanish unless we’re careful about keeping all of them close to the identity.

But notice that this same formula applies to the Jacobian for a feed-forward
network (e.g. MLP or conv net). How come we never talked about exploding
and vanishing gradients until we got to RNNs? The reason is that until
recently, feed-forward nets were at most tens of layers deep, whereas RNNs
would often be unrolled for hundreds of time steps. Hence, we’d be doing
lots more steps of backprop (i.e. multiplying lots of Jacobians together),
making things more likely to explode or vanish. This means if we want to
train feed-forward nets with hundreds of layers, we need to figure out how
to keep the backprop computations stable.

In Homework 3, you derived the backprop equations for the following
architecture, where the inputs get added to the outputs:

z=WWx + bl
h = ¢(z) (1)
y=x+ w®h

This is a special case of a more general architectural primitive called the
residual block:

y =x+ F(x), (2)
where F is a function called the residual function. In the above example,
F is an MLP with one hidden layer. In general, it’s typically a shallow
neural net, with 1-3 hidden layers. We can represent the residual block

graphically as follows:
F(x) d@
A

X

Here, & denotes addition of the values.
We can string together multiple residual blocks in series to get a deep
residual network, or ResNet:

P—

@

F(z®)

+3)

@
HN»[:%:j)
@1
D
f@%[%::[>

e

(Each layer computes a separate residual function, with separate trainable
parameters.) Last lecture, we noted two architectures that make it easy to
represent the identity function: identity RNNs and LSTMs. The ResNet is a
third such architecture. Observe that if each F returns zero (e.g. because all
the weights are 0), then this architecture simply passes the input x through
unmodified. L.e., it computes the identity function.
We can also see this algebraically in terms of the backprop equation for
a residual block:
X0 = x50 4 50 O
0x (3)
oF
4

ox

— x(+1) (I

Hence, if 0F/0x = 0, the error signals are simply passed through unmodi-
fied. As long as 0F/0x is small, the Jacobian for the residual block will be
close to the identity, and the error signals won’t explode or vanish.

So that’s the one big idea behind ResNets. If people say they are using
ResNets for a vision task, they’re probably referring to particular architec-
tures based on the ones in this paperﬂ This paper achieved state-of-the-art
on ImageNet in 2015, and since then, the state-of-the-art on many computer
vision tasks has consisted of variants of these ResNet architectures. There’s
one important detail that needs to be mentioned: the input and output to
a residual block clearly need to be the same size, because the output is the
sum of the input and the residual function. But for conv nets, it’s important
to shrink the images (e.g. using pooling) in order to expand the number of
feature maps. ResNets typically achieve this by having a few convolution
layers with a stride of 2, so that the dimension of the image is reduced by
a factor of 2 along each dimension.

The benefit of the ResNet architecture is that it’s possible to train ab-
surdly large numbers of layers. The state-of-the-art ImageNet classifier from
the above paper had 50 residual blocks, and the residual function for each
was a 3-layer conv net, so the network as a whole had about 150 layers.
Hardly anybody had been expecting it to be useful to train 150 layers. On
a smaller object recognition benchmark called CIFAR, they were actually
able to train a ResNet with 1000 layers, though it didn’t work any better
than their 100-layer network.

What on earth are all these layers doing? When we visualized the In-
ception activations, we found pretty good evidence that higher layers were
learning more abstract and high-level features. But the idea that there are
150 meaningfully different levels of abstraction seems pretty fishy. We ac-
tually don’t have a good explanation for why 150 layers works better than
50.

3 Attention

Our second topic for today is attention. Recall the encoder-decoder model
for machine translation from last lecture:

'K. He, X. Zhang, S. Ren, and J. Sun, 2016. Deep residual learning for image recog-
nition

“le” “renard” “brun” “rapide” <EOS>

! t ! !
N ot N o B N o S B s I e B
! ! ! ! I f f !

“the” “quick” “brown” “fox” <EOS> “le” “renard” “brun” “rapide”

encoder decoder

All the information the decoder receives about the input sentence is stored
in a single code vector, which is the final hidden state of the encoder. This
means the code vector needs to store all the relevant information about
the input sentence — and since we’re translating the whole sentence, that
effectively means it must have memorized the sentence. It’s a bit surprising
that this is possible, though not implausible: it may require about 1000
bits to store the ASCII characters in a 20-word sentence, so it should be
possible in principle to store the same information in a vector of length 5000
(a typical hidden dimension for this architecture). But still, this is putting
a lot of pressure on the RNN’s memory.

Attention-based modeling fixes this problem by allowing the decoder
to look at the input sentence as it generates text. This removes the need
for the hidden units to store the whole input sentence. Instead, they’ll
just have to remember a little bit of context about things like where it is
in the input sentence and what part of speech it’s looking for next. The
original attention-based translation paper was Bahdanau et al., “Neural
machine translation by jointly learning to align and translate”ﬂ and we’ll
be focusing on their architecture here.

This model has both an encoder and a decoder. Let’s consider both in
sequence. First, the encoder. The encoder’s job is to compute an anno-
tation vector for each word in the sentence; these vectors are what the
decoder will see when it focuses on a word. One seemingly obvious choice
would be to use a lookup table of word representations, just like the neural
language model from Lecture 7. But words can have multiple meanings, and
it often requires information from the rest of the sentence to disambiguate
the meaning. The relevant information could be either earlier or later in the
sentence. So instead, we use an architecture called a bidirectional RNN:

h® h® h® h®
< -« < l—
> > > —>

word 1 word 2 word 3 word 4

This is really just a fancy term for two completely separate RNNs, one of
which processes the words in forward order, and the other of which processes
them in reverse order. The hidden states of the two RNNs are concatenated
at each time step to give the annotation vector.

The decoder architecture is shown in Figure [1} It is very similar to the
RNN language models we’ve looked at, in that it is an RNN which predicts a

2D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning
to align and translate. ICLR, 2015. https://arxiv.org/abs/1409.0473

The original bidirectional RNN
uses a kind of architecture called
the gated recurrent unit (GRU),
which is similar to the LSTM. You
could use an LSTM instead if you
want.

https://arxiv.org/abs/1409.0473

output output output output
word 1 word 2 word 3 word 4

f f f
s = @ — O decoder

a / /output /:utput output
C

C(2) word 1 C(3) word 2 4) word 3

C(

T

A
/

\
\/
\

T T T T encoder

input input input input
word 1 word 2 word 3 word 4

Figure 1: The decoder architecture from Bahdanau et al.’s attention-based
translation model.

distribution over words at each time step, and receives the words as input.
Like the RNN language models, it’s trained using teacher forcing, so it
receives the words of the actual target sentence as inputs. To sample from
the model at test time, the words are sampled from the model’s predictions
and fed back in as inputs. So far, nothing new.

The difference is that the decoder uses attention to compute a context
vector ¢ for each output time step i. (We're using ¢ rather than ¢ to
keep separate the time steps of the encoder and decoder.) This is a soft
attention model, which means that it has the ability to spread its attention
across all the input words. More precisely, it computes a weighted average
of the annotation vectors for all the input words:

¢ — Z oaijh(j), (4)
J

where the attention weights a;; are computed as a softmax over all the input
words:

o exp(e;j)
Yij = Zj/ exp(e;j) (5)
iy = a(s), hO)). (6)

Notice that the logits e;; are a function of both the decoder’s previous
hidden state s~ and the annotation vector h(). The previous hidden
state is clearly needed, since the decoder needs to remember some context
about what it has already generated (such as the part of speech of the
previous word) in order to know where to look. Using the annotation vectors
themselves as inputs to the attention weights is an interesting approach,
as it lets the attention mechanism implement content-based addressing,
which looks up words according to their semantics rather than their position
in the sentence. For instance, if the decoder has just produced an adjective,

In practice, we don’t actually
sample from the model’s
predictions, since that has too high
a chance of producing a silly
sentence. Instead, we search for
the most probable output sentence
using a technique called beam
search. But this is beyond the
scope of the class.

Hard attention models only look at
one part of the input at a time,
but we won’t consider those in this
class.

agreement
the
European
Economic
was
signed

in

August
1992
<end>

on
environment

should
marine

is

the

least

known

of
environments
<end>

L &
accord o

sur convient

de

la noter

que

I

environnement

marin

. ? est

eté le

signé moins

en connu

de

i

environnement

Zone
économigue

européenne

aolt
1992

<end> <end>

Figure 2: Visualizations of where the attention model is looking as it gener-
ates each output word. Each row corresponds to the attention vector (the
a;j’s) for one word in the output (French) sentence. Figure from Bahdanau
et al.

then it may want to attend to nouns next. Of course, it is likely to use
positional information as well. This isn’t specified explicitly as part of the
attention mechanism, but it can do it implicitly because it’s pretty easy
for the encoder RNN to count the position in the sentence as part of the
annotation vectors.

Even though the soft attention mechansim has the ability to spread the
attention over the entire sentence, in practice it usually chooses to look
only at one input word or a handful of input words. Figure [2| shows some
visualizations of where an English-to-French translation model is attending
to as it generates each output word. For the most part, it marches in order
through the input, looking at one word at a time. But it’s able to reorder
words as appropriate, such as when it translates “the European Economic
Area” to “la zone économique européenne.”

	Introduction
	ResNets
	Attention

