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LeNetS (Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, november 1998.)



Motivation — ConvNets are everywhere!

(Krizhevsky et al, 2012)
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Motivation — ConvNets are everywhere!
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Face recognition (Taigman et al, 2014)
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Action recognition from video (Simonyan et al, 2014)
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Motivation — ConvNets are everywhere!

Street sign recognition Galaxy classification o _
(Sermanet et al, 2011) (Dieleman et al, 2014)  Mitosis detection
(Ciresan et al, 2013)



Motivation — ConvNets are everywhere!

Playing Atari games (Mnih et al, 2013)

 Many, many more applications (and not only vision):

» Object detection » Pedestrian detection
e Image segmentation e Semantic image search
* Pose estimation « Extractive summarization

* Image captioning « Sentiment analysis of text



A brief review

Fully connected:
(unique weights across
all pairs of neurons)

Main operation:
Matrix Multiply

Convnet:
(neurons are volumes,
weights are shared)

Main operation:
Convolution
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Some terminology

/ 32
(think of this just
B O like an image, but
E>‘Q O O O () with 5 channels
— instead)
32 /
3
Channels Kernel (or filter) Each “slice” across depth

(e.g. 3 for RGBimage) 5 in this example Is afeature map



1D forward pass, strides, padding

nOnE

0 1 2 || -1 1 31| 0

Stride of 1 Stride of 2 kernel

* Weight sharing: the kernel is scanned across the input
(as opposed to fully connected networks)

 Larger strides reduce computation cost, but usually at
the expense of accuracy

e In this example, each side is “padded” with an extra 0



Source pixel

Center element of the kernel is placed over the (0 X 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Convolution kernel
(emboss)

New pixel value (destination pixel)
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2D Convolution Example




Example #1

 Input: 32 x 32 x 3 Image
e 5 Filters, each 5 x5
e Stride of 1

* No padding

 What is the output volume?

32

0000@¢

« How many parameters are there?




Example #1

 Input: 32 x 32 x 3 Image 32
e 5 Filters, each 5 x5 — |
ﬁf 0000P
o Stride of 1
* No padding "
3
e What is the output volume? 28 X 28 x5

« How many parameters are there? ((5x5)x3)x5=375




Example #2

 Input: 32 x 32 x 3 Image
e 5 Filters, each 5 x5
e Stride of 3

* No padding

 What is the output volume?

32

0000@¢

« How many parameters are there?




Example #2

 Input: 32 x 32 x 3 Image 32
e 5 Filters, each 5 x5 — |
ﬁf 0000P
o Stride of 3
* No padding "
3
e What is the output volume? 10x10x5

« How many parameters are there? ((5x5)x3)x5=375




GENERATING TEXT CONDITIONED ON IMAGES
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in this picture there is another grey
pavement on the right ; three grey
clouds and a blue sky in the background ;
the houses and on the left before it ; a
dark green , wooded slopes behind it ;
grey clouds in a light blue sky in the
background ; snow covered mountains

this product contains a slip resistant

and mesh upper is fully designed for
breathable durability . the detachable
leather footbed is the high , they feature

a lady - like footbed that light sophistication
and flirty tear silhouette to glam up your
feet , style to help your thing . with
traditional support .



THE LOG-BILINEAR LANGUAGE MODEL (LBL)

walking
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I' = Istreet

Word representations r,,., context matrices C;
. . A n—1
Predicted next word representationr = » ._; C;r,,,

R: matrix where each row 1s a word feature from the vocabulary

v v v V¥

Score r with each word and normalize:

exp(r’r, + b,)
Zj exp(r'r;j + b;)

» Backprop through both parameters and word embeddings

Pw, =wlwi,u_1) =




ADDITIVE MODALITY BIASING (MLBL-B)

walking
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1
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Cm f= beach

» Suppose we have 1image features x
» Simplest approach: Bias the predicted next word representation:

n—I1
r — (Z Cirw,-) + C,x

i=1
» This turns out to be a surprisingly effective model (given good
image features)



