
autograd tutorial

Paul Vicol, Slides Based on Ryan Adams’
January 30, 2017

CSC 321, University of Toronto

1

tutorial outline

1. Automatic Differentiation
2. Introduction to Autograd
3. IPython Notebook Demo

2

motivation

To solve a problem using machine learning you generally need to:

1. Define a model fθ governed by parameters θ

2. Come up with a loss function L that quantifies how well your model fits
the data

3. Optimize the loss function with respect to the parameters θ

• To optimize L w.r.t θ, we need to find the gradient ∇θL = ∂L
∂θ

3

approaches to computing gradients

• Symbolic differentiation: Automatic manipulation of mathematical
expressions to get derivatives

• Input and output are mathematical expressions
• Used in Mathematica, Maple, Sympy, etc.

• Numeric differentiation: Approximating derivatives by finite differences:

∂

∂xi
f(x1, . . . , xN) = lim

h→0

f(x1, . . . , xi + h, . . . , xN) − f(x1, . . . , xi − h, . . . , xN)
2h

• Automatic differentiation (AD): A method to get exact derivatives
efficiently, by storing information as you go forward that you can reuse
as you go backwards

• Takes code that computes a function and returns code that computes the
derivative of that function.

• “The goal isn’t to obtain closed-form solutions, but to be able to write a
program that efficiently computes the derivatives.”

• Autograd, Torch Autograd

4

https://github.com/HIPS/autograd
https://github.com/twitter/torch-autograd

idea behind automatic differentiation (ad)

• Automatic differentiation is a set of abstractions that enable you to
write a function and efficiently apply the chain rule to it

Main Idea:

1. All numeric computations are compositions of a finite set of elementary
operations (+, -, *, /, exp, log, sin, cos, etc.)

2. We can write code to differentiate these basic operations
3. When we encounter a complicated function we break it down and deal
with those basic ops as opposed to finding the gradient of the entire
computation.

5

autograd

• Autograd is a Python package for automatic differentiation
• To install Autograd:

pip install autograd

• Autograd can automatically differentiate Python and Numpy code
• It can handle most of Python’s features, including loops, if statements,
recursion and closures

• It can also compute higher-order derivatives
• Uses reverse-mode differentiation (backpropagation) so it can
efficiently take gradients of scalar-valued functions with respect to
array-valued or vector-valued arguments.

6

autograd: automatic differentiation in python

Thinly wrapped numpy
import autograd.numpy as np

Basically everything you need
from autograd import grad

Define a function like normal with Python and Numpy
def tanh(x):

y = np.exp(-x)
return (1.0 - y) / (1.0 + y)

Create a function to compute the gradient
grad_tanh = grad(tanh)

Evaluate the gradient at x = 1.0
print(grad_tanh(1.0))

7

a more complicated example

Taylor approximation to sin function
def fun(x):

currterm = x
ans = currterm
for i in range(1000):

print(i, end=’ ’)
currterm = - currterm * x ** 2 /

((2 * i + 3) * (2 * i + 2))
ans = ans + currterm
if np.abs(currterm) < 0.2:

break

return ans

d_fun = grad(fun)
dd_fun = grad(d_fun) # Second-order gradient

8

gradients of data structures

• Autograd allows you to compute gradients of many types of data
structures

• Any nested combination of lists, tuples, arrays, or dicts

• The flatten function converts data structures to 1-D vectors
• We know how to compute gradients of vectors
• To compute gradients of more complicated structures, convert the
structures to vectors, perform computations, and then convert back to the
original data structure

• Provides a lot of flexibility in how you store and manipulate the
parameters of your model

9

modularity: implementing custom gradients

There are several reasons you might want to do this, including:

1. Speed: You may know a faster way to compute the gradient for a
specific function.

2. Numerical Stability
3. When your code depends on external library calls

from autograd import primitive
@primitive
def logsumexp(x):

return ...

Define a custom gradient function
def make_grad_logsumexp(ans, x):

def gradient_product(g):
return ...

return gradient_product

Tell autograd about the custom gradient function
logsumexp.defgrad(make_grad_logsumexp) 10

other automatic differentiation tools

• Two approaches to automatic differentiation: explicit vs implicit
computational graph construction.

• Various tools implement limited forms of automatic differentiation
using mini-languages

• Many deep learning packages involve explicit graph construction,
including:

• Theano
• Caffe
• Vanilla Torch (as compared to Autograd for Torch)
• Tensorflow

• On the other hand, Autograd implicitly constructs a computational
graph by tracking operations

• Review paper: Baydin, Pearlmutter, Radul & Siskind “Automatic
Differentiation in Machine Learning: A Survey”
http://arxiv.org/abs/1502.05767

11

http://arxiv.org/abs/1502.05767

ipython notebook example

12

	iPython Notebook Example

