
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15c
Deep autoencoders for document retrieval and

visualization

How to find documents that are similar to a query document

•  Convert each document into a �bag of words�.
–  This is a vector of word counts ignoring order.
–  Ignore stop words (like �the� or �over�)

•  We could compare the word counts of the query
document and millions of other documents but this
is too slow.
–  So we reduce each query vector to a much

smaller vector that still contains most of the
information about the content of the document.

fish
cheese
vector
count
school
query
reduce
bag
pulpit
iraq
word

0
0
2
2
0
2
1
1
0
0
2

How to compress the count vector

•  We train the neural network to
reproduce its input vector as its
output

•  This forces it to compress as
much information as possible
into the 10 numbers in the
central bottleneck.

•  These 10 numbers are then a
good way to compare
documents.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

10

input
vector

output
vector

The non-linearity used for reconstructing bags of words

•  Divide the counts in a bag of words
vector by N, where N is the total number
of non-stop words in the document.
–  The resulting probability vector gives

the probability of getting a particular
word if we pick a non-stop word at
random from the document.

•  At the output of the autoencoder, we use
a softmax.
–  The probability vector defines the

desired outputs of the softmax.

•  When we train the first
RBM in the stack we use
the same trick.
–  We treat the word

counts as probabilities,
but we make the visible
to hidden weights N
times bigger than the
hidden to visible
because we have N
observations from the
probability distribution.

Performance of the autoencoder at document
retrieval

•  Train on bags of 2000 words for 400,000 training cases of business
documents.
–  First train a stack of RBM�s. Then fine-tune with backprop.

•  Test on a separate 400,000 documents.
–  Pick one test document as a query. Rank order all the other test

documents by using the cosine of the angle between codes.
–  Repeat this using each of the 400,000 test documents as the

query (requires 0.16 trillion comparisons).
•  Plot the number of retrieved documents against the proportion that

are in the same hand-labeled class as the query document.
Compare with LSA (a version of PCA).

Retrieval performance on 400,000 Reuters business news stories

First compress all documents to 2 numbers using PCA on
log(1+count). Then use different colors for different categories.

First compress all documents to 2 numbers using deep auto.
Then use different colors for different document categories

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 15d
Semantic hashing

Finding binary codes for documents

•  Train an auto-encoder using 30 logistic

units for the code layer.
•  During the fine-tuning stage, add noise

to the inputs to the code units.
–  The noise forces their activities to

become bimodal in order to resist
the effects of the noise.

–  Then we simply threshold the
activities of the 30 code units to get
a binary code.

•  Krizhevsky discovered later that its
easier to just use binary stochastic
units in the code layer during training.

 2000 reconstructed counts

500 neurons

 2000 word counts

500 neurons

250 neurons

250 neurons

30 code

Using a deep autoencoder as a hash-function for
finding approximate matches

hash
function

supermarket
search

